
Packages

1

Contents

What is a Package?

Creating a Package

Referring to a Package Member

Managing Source and Class Files

Summary of Creating and Using Packages

2

What is a Package?

 A package is a namespace that organizes a set of
related classes and interfaces.

 Conceptually you can think of packages as being
similar to different folders on your computer. You
might keep HTML pages in one folder, images in
another, and scripts or applications in yet another.

3

What is a Package?

 Because software written in Java can be
composed of hundreds or thousands of individual
classes, it makes sense to keep things organized
by placing related classes and interfaces into
packages.

 The Java platform provides an enormous class
library (a set of packages) suitable for use in your
own applications. This library is known as the
"Application Programming Interface", or "API" for
short.

 This allows the programmer to focus on the
design of the particular application, rather than
the infrastructure required to make it work.

4

What is a Package?

 The Java Platform API Specification contains the
complete listing for all packages, interfaces,
classes, fields, and methods supplied by the Java
Platform 6, Standard Edition.

 http://java.sun.com/javase/6/docs/api/

 http://java.sun.com/javase/ja/6/docs/ja/api/

 It will become your single most important piece
of reference documentation.

 Definition: A package is a grouping of related
types providing access protection and name
space management.

5

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/ja/6/docs/ja/api/

Creating a Package
 Suppose you write a

group of classes that
represent graphic
objects, such as circles,
rectangles,lines, and
points.

 You also write an

interface, Draggable,

that classes implement if

they can be dragged

with the mouse.

 Your source code is in 6

files (see the right side

of the slide)

//in the Draggable.java file
public interface Draggable {

. . .
}
//in the Graphic.java file
public abstract class Graphic {

. . .
}
//in the Circle.java file
public class Circle extends Graphic implements Draggable {

. . .
}
//in the Rectangle.java file
public class Rectangle extends Graphic implements Draggable
{

. . .
}
//in the Point.java file
public class Point extends Graphic implements Draggable {

. . .
}
//in the Line.java file
public class Line extends Graphic implements Draggable {

. . .
}

6

Creating a Package

 You should bundle these classes and the
interface in a package for several reasons,
including the following:

 You and other programmers can easily determine
that these types are related.

 You and other programmers know where to find
types that can provide graphics-related functions.

 The names of your types won't conflict with the
type names in other packages because the
package creates a new namespace.

 You can allow types within the package to have
unrestricted access to one another yet still
restrict access for types outside the package.

7

Creating a Package

 Put If you put the graphics

interface and classes listed in

the slide in a package called

graphics, you would need six

source files (see the right side

of the slide)

 Put these files into the

graphics folder and compile

them:
javac graphics/*.java

 Note: If you put multiple types in

a single source file, only one can

be public, and it must have the

same name as the source file.

For example, you can define

public class Circle in the file

Circle.java

package graphics; //in the Draggable.java file

public interface Draggable {

. . .

}

package graphics; //in the Graphic.java file

public abstract class Graphic {

. . .

}

package graphics; //in the Circle.java file

public class Circle extends Graphic implements Draggable {

. . .

}

package graphics; //in the Rectangle.java file

public class Rectangle extends Graphic implements Draggable {

. . .

}

package graphics; //in the Point.java file

public class Point extends Graphic implements Draggable {

. . .

}

package graphics; //in the Line.java file

public class Line extends Graphic implements Draggable {

. . .

}

8

Naming Conventions

 Package names are written in all lowercase to avoid
conflict with the names of classes or interfaces.
Companies use their reversed Internet domain name to
begin their package names:
 com.example.orion for a package named orion created by

a programmer at example.com.

 In some cases, the internet domain name may not be a
valid package name. The suggested convention is to add
an underscore.

Legalizing Package Names

Domain Name Package Name Prefix

clipart-open.org

free.fonts.int

poetry.7days.com

org.clipart_open

int_.fonts.free

com._7days.poetry

9

Referring to a Package Member

To use a public package member (class,

interface) from outside its package, you

must do one of the following:

 Import the package member.

 Import the member's entire package.

 Refer to the member by its fully
qualified name.

10

Referring to a Package Member by Its
Simple Name

 You can import the
member of the package
or the whole package and
then use the simple name
of that member

 The asterisk in the import
statement can be used
only to specify all the
classes within a
package, as shown here.
It cannot be used to
match a subset of the
classes in a package

// importing the member
import graphics.Rectangle;
. . .
Rectangle myRectangle = new Rectangle();
…

// importing the whole package
import graphics.*;
. . .
Circle myCircle = new Circle();
Rectangle myRectangle = new Rectangle();
…

import graphics.A*; //does not work; error

11

Packages Imported Automatically

The Java compiler automatically imports
three entire packages for each source file
(you do not need to specify the import
statement):
 the package with no name,

 the java.lang package, and

 the current package (the package for the
current file).

Members of these packages can be
referred by their simple names.

12

Referring to a Package Member by Its
Qualified Name

 If you do not use the import statement, you

have to refer to the package member by its

fully qualified name (see Slide 11, example 1).

graphics.Rectangle myRect = new graphics.Rectangle();

13

Apparent Hierarchies of Packages

 At first, packages appear to be hierarchical, but they are
not. For example, the Java API includes:
 a java.awt package,
 a java.awt.color package,
 a java.awt.font package.

 The prefix java.awt (the Java Abstract Window Toolkit) is
used for a number of related packages to make the
relationship evident, but not to show inclusion.

 The following statement imports all of the types in the
java.awt package, but it does not import java.awt.color,
java.awt.font:
 import java.awt.*;

 To use the members of the aforementioned packages,
you have to write:

import java.awt.*;
import java.awt.color.*;
Import java.awt.font.*;

14

Managing Source and Class Files

 Many implementations of the Java platform rely on

hierarchical file systems to manage source and class

files.

 The strategy is as follows:

 Put the source code for a class or interfacein a text file
whose extension is .java

// in the Rectangle.java file

package graphics;

public class Rectangle() {

. . .

}

 Then, put the source file in a directory whose name reflects
the name of the package to which the type belongs:

...../graphics/Rectangle.java
15

Simple Example

// file ClassOne.java in the directory
// /home/s111111/java/Ex08/demopackage
package demopackage;
public class ClassOne {

public void methodClassOne() {
System.out.println("methodClassOne");

}
}

// file ClassTwo.java in the directory
// /home/s111111/java/Ex08/demopackage
package demopackage;
public class ClassTwo {

public void methodClassTwo() {
System.out.println("methodClassTwo");

}
}

Compilation:
javac *.java

// file UsageDemoPackage.java in
// the directory
// /home/s111111/java/Ex08/
import demopackage.*;
class UsageDemoPackage {

public static void main(String[] args) {
ClassOne v1 = new ClassOne();
ClassTwo v2 = new ClassTwo();
v1.methodClassOne();
v2.methodClassTwo();

}
}

 Compilation:

javac UsageDemoPackage.java

 Run:

java UsageDemoPackage

16

Managing Source and Class Files

 The qualified name of the package member and

the path name to the file are parallel:

 class name: graphics.Rectangle

 pathname to file: graphics¥Rectangle.java

 If the Example company had a

com.example.graphics package that contained a

Rectangle.java source file, it would be contained

in a series of subdirectories like this:

/com/example/graphics/Rectangle.java

17

Managing Source and Class Files

 When you compile a

source file, the compiler

creates a different output

file (its extension is .class)

for each type defined in it

 the compiled files will be

located at:

// in the Rectangle.java file

package com.example.graphics;

public class Rectangle{

. . .

}

class Helper{

. . .

}

<path to the parent directory of the output files>/com/example/graphics/Rectangle.class

<path to the parent directory of the output files>/com/example/graphics/Helper.class

18

Managing Source and Class Files

 The full path to the classes
directory is called the class
path

 You may set the class path
with the CLASSPATH system
variable

The class path is:

<path_two>/classes

Package name is:

com/example/graphics,

The compiler and JVM look for .class files in

<path_two>/classes/com/example/graphics

 By default, the compiler and the JVM search the current directory
and the JAR file containing the Java platform classes so that
these directories are automatically in your class path.

19

Summary of Creating and Using Packages

 To create a package for a type, put a package statement as
the first statement in the source file that contains the type
(class or interface).

 To use a public type that is in a different package, you
have three choices:
 use the fully qualified name of the type,

 import the type, or

 import the entire package of which the type is a member.

 The path names for a package s source and class files
mirror the name of the package.

 You might have to set your CLASSPATH so that the
compiler and the JVM can find the .class files for your
types.

'

20

