
Interfaces

1

Contents

◆What is an Interface?

◆ Interfaces in Java

◆ Interfaces and Multiple Inheritance

◆A Sample Interface, Relatable

◆Using an Interface as a Type

◆Rewriting Interfaces

◆Abstract Classes vs. Interfaces

◆Summary of Interfaces

2

A Hierarchy of Bicycle Classes

Bicycle

RoadBike MountainBike TandemBike

3

Comments on the Previous Slide

◆ In chapter 2, you considered an example

of the bicycle class.

◆Different kinds of objects often have a

certain amount in common with each

other.

 Mountain bikes, road bikes, and tandem bikes
share the characteristics of bicycles:
―current speed,

―current pedal cadence,

―current gear.

4

Possible Implementation of a Bicycle
class Bicycle {

private int cadence, speed, gear; // three fields represent the object state
public Bicycle(int startCadence, int startSpeed, int startGear) {

gear = startGear; // the Bicycle class has one constructor
cadence = startCadence;
speed = startSpeed;

}
public void changeCadence(int newValue) { // methods define interactions of

cadence = newValue; // the object with the outside world
}
public void changeGear(int newValue){

gear = newValue;
}
public void speedUp(int increment){

speed = speed + increment;
}
public void applyBrakes(int decrement){

speed = speed - decrement;
}
public void printStates() {

System.out.println("cadence:"+cadence+" speed:"+speed+" gear:"+gear);
}

} 5

Possible Implementation of a MountainBike

public class MountainBike extends Bicycle {
// the MountainBike subclass adds one exra field

private int seatHeight;
// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startCadence, int startSpeed, int startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;

}
// the MountainBike subclass has one extra method

public void setHeight(int newValue) {
seatHeight = newValue;

}
}

◆ All fields (cadence, speed and gear) are
inherited from the Bicycle class

◆ All methods are inherited from the Bicycle class

6

What is an Interface?

◆Objects define their interaction with the

outside world through the methods that

they expose.

◆Methods form the object's interface with

the outside world.

 The buttons on the front of your television set
are the interface between you and the electrical
wiring on the other side of its plastic casing.
You press the "power" button to turn the
television on and off.

7

What is an Interface?

◆ In its most common form, an interface is a group of

related methods with empty bodies. A bicycle's

behavior, if specified as an interface, might appear

as follows:

interface BicycleInterface {
void changeCadence(int newValue);
void changeGear(int newValue);
void speedUp(int increment);
void applyBrakes(int decrement);

}

8

What is an Interface?

◆ To implement this interface, the name of your class
would change (to ACMEBicycle, for example), and
you'd use the implements keyword in the class
declaration (see the next slide).

◆ Interfaces form a contract between the class and the
outside world, and this contract is enforced at build
time by the compiler.

◆ If your class claims to implement an interface, all
methods defined by that interface must appear in its
source code before the class will successfully compile.

9

What is an Interface?
class ACMEBicycle implements BicycleInterface {

private int cadence, speed, gear; // three fields represent the object state
public ACMEBicycle(int startCadence, int startSpeed, int startGear) {

gear = startGear; // the ACMEBicycle class has one constructor
cadence = startCadence;
speed = startSpeed;

}
void changeCadence(int newValue) { // methods define interactions of

cadence = newValue; // the object with the outside world
}
void changeGear(int newValue) {

gear = newValue;
}
void speedUp(int increment) {

speed = speed + increment;
}
void applyBrakes(int decrement) {

speed = speed - decrement;
}
void printStates() {

System.out.println("cadence:"+cadence+" speed:"+speed+" gear:"+gear);
}

}
10

Interfaces in Java

◆ In the Java programming language, an interface

is a reference type, similar to a class, that can

contain only

 constants,

 method signatures, and
 nested types.

◆There are no method bodies.

◆ Interfaces cannot be instantiated——they can

only be implemented by classes or extended by

other interfaces.

11

Interfaces in Java

◆ Imagine a futuristic society where computer-
controlled robotic cars transport passengers
through city streets without a human operator.
 Automobile manufacturers write Java software that

operates the automobile—stop, start, accelerate, turn
left, and so forth.

 Another industrial group, electronic guidance
instrument manufacturers, make computer systems that
receive GPS (Global Positioning Satellite) position data
and wireless transmission of traffic conditions and use
that information to drive the car.

 An example of the definition of this interface is on the
next slide.

12

Interfaces in Java

◆ Defining an interface is similar to creating a new
class:

public interface OperateCar {

// constant declarations, if any

// method signatures
int turn(Direction direction, // An enum with values RIGHT,

LEFT double radius, double startSpeed, double endSpeed);
int changeLanes(Direction direction, double startSpeed, double endSpeed);
int signalTurn(Direction direction, boolean signalOn);
int getRadarFront(double distanceToCar, double speedOfCar);
int getRadarRear(double distanceToCar, double speedOfCar);

......
// more method signatures

}

13

Interfaces in Java

◆ To use an interface, you write a class that implements the interface.
When an instantiable class implements an interface, it provides a
method body for each of the methods declared in the interface.

public class OperateBMW760i implements OperateCar {
// the OperateCar method signatures, with implementation, for example:

int signalTurn(Direction direction, boolean signalOn) {
//code to turn BMW's LEFT turn indicator lights on
//code to turn BMW's LEFT turn indicator lights off
//code to turn BMW's RIGHT turn indicator lights on
//code to turn BMW's RIGHT turn indicator lights off

}

// other members, as needed -- for example, helper classes
// not visible to clients of the interface

}

14

Interfaces in Java

◆ In the robotic car example above, it is the automobile

manufacturers who will implement the interface.

 BMW's implementation will be substantially different from
that of Toyota, of course, but both manufacturers will
adhere to the same interface.

◆ The guidance manufacturers, who are the clients of

the interface, will build systems that use GPS data on

a car's location, digital street maps, and traffic data to

drive the car. In so doing, the guidance systems will

invoke the interface methods:
 turn, change lanes, brake, accelerate, and so forth.

15

Interfaces and Multiple Inheritance
◆ Interfaces are not part of the class hierarchy,

although they work in combination with classes.

◆ Java does not permit multiple inheritance but
interfaces provide an alternative.

◆ In Java, a class can inherit from only one class but
it can implement more than one interface.

◆ Therefore, objects can have multiple types:
 The type of their own class and the types of all the

interfaces that they implement.
 InterfaceA interfaceName = new ClassB();

or new ClassC();

or new ClassD();

 InterfaceA interfaceNameA

or InterfaceB interfaceNameB

or InterfaceC interfaceNameC = new ClassD();
16

An Example with Multiple Inheritance

◆ An interface declaration consists of modifiers, the
keyword interface, the interface name, a comma-
separated list of parent interfaces (if any), and the
interface body.

public interface GroupedInterface extends Interface1,
Interface2, Interface3 {

// constant declarations
double E = 2.718282; // base of natural logarithms

// method signatures
void doSomething (int i, double x);
int doSomethingElse(String s);

}

17

A Sample Interface, Relatable

◆ An interface that defines how to compare the size
of objects.

◆ If you want to be able to compare the size of
similar objects, no matter what they are, the class
that instantiates them should implement Relatable.

public interface Relatable {

// this (object calling isLargerThan) and
// other must be instances of the same class
// returns 1, 0, -1 if this is greater
// than, equal to, or less than other
public int isLargerThan(Relatable other);

}

18

A Sample Interface, Relatable

◆ Any class can implement Relatable if there is

some way to compare the relative "size" of

objects instantiated from the class.

 For strings, it could be a number of characters;

 For books, it could be a number of pages;

 For students, it could be weight; and so forth;

 For planar geometric objects, it could be area;

 For three-dimensional geometric objects, it could be
volume.

 All such classes can implement the isLargerThan()
method (see the RectanglePlus class that follows).

19

Implementing the Relatable Interface

public class RectanglePlus implements Relatable {
private int width = 0;
private int height = 0;
private Point origin;

public RectanglePlus() { // constructor
origin = new Point(0, 0);

}
public int getArea() {// a method for computing the area of the rectangle

return width * height;
}
public int isLargerThan(Relatable other) { // a method to implement Relatable

RectanglePlus otherRect = (RectanglePlus)other;
if (this.getArea() < otherRect.getArea()) return -1;
else if (this.getArea() > otherRect.getArea()) return 1;
else return 0;

}
}

20

Using an Interface as a Type

◆ When you define a new interface, you are
defining a new reference data type.
 You can use interface names anywhere you can use

any other data type name.

◆ If you define a reference variable whose type is
an interface, any object you assign to it must be
an instance of a class that implements the
interface.

21

 InterfaceA interfaceName = new ClassB();

Using an Interface as a Type
◆ Here is a method for finding the largest object in a pair of objects,

for any objects that are instantiated from a class that implements
Relatable.

public Object findLargest(Object object1, Object object2) {
Relatable obj1 = (Relatable)object1;
Relatable obj2 = (Relatable)object2;

// By casting object1 to a Relatable type, it can invoke the
// isLargerThan method

if ((obj1).isLargerThan(obj2)) > 0)
return object1;

else
return object2;

}

22

◆ This method works for any "relatable" objects. When they
implement Relatable, they can be of both their own class (or
superclass) type and a Relatable type.

Rewriting Interfaces

◆ Consider an interface that you have developed called DoIt:

public interface DoIt {
void doSomething(int i, double x);
int doSomethingElse(String s);

}

◆ Suppose that, at a later time, you want to add a third

method to DoIt, so that the interface now becomes:

public interface DoIt {
void doSomething(int i, double x);
int doSomethingElse(String s);
boolean didItWork(int i, double x, String s);

}

23

Comments on the Previous Slide

◆ If you make this change, all classes that

implement the old DoIt interface will break

because they don't implement the interface

anymore.

◆ Programmers relying on this interface will protest

loudly. Try to anticipate all uses for your interface

and to specify it completely from the beginning.

◆ You may need to create more interfaces later. For

example, you could create a DoItPlus interface that

extends DoIt, see the next slide.

24

Rewriting Interfaces

◆Now users of your code can choose to

continue to use the old interface or to upgrade

to the new interface

public interface DoItPlus extends DoIt {

boolean didItWork(int i, double x, String s);

}

25

Abstract Classes vs. Interfaces

◆Unlike interfaces, abstract classes can contain

fields that are not static and final, and they can

contain implemented methods. Such abstract

classes are similar to interfaces, except that

they provide a partial implementation, leaving

it to subclasses to complete the

implementation.

◆ If an abstract class contains only abstract

method declarations, it should be declared as

an interface instead.

26

Abstract Classes vs. Interfaces

◆ A class that implements an interface must implement all of
the interface's methods. It is possible, however, to define a
class that does not implement all of the interface methods,
provided that the class is declared to be abstract.

abstract class X implements Y {
// implements all but one method of Y

}

class Z extends X {
// implements the remaining method in Y

}

◆ In this case, class X must be abstract because it does
not fully implement Y, but class Z does, in fact,

implement Y.

27

Summary of Interfaces

◆ An interface defines a protocol of communication

between two objects. An interface declaration

contains signatures, but no implementations, for

a set of methods, and might also contain

constant definitions.

◆ A class that implements an interface must

implement all the methods declared in the

interface.

◆ An interface name can be used anywhere a type

can be used.

28

