
Polymorphism

1

Contents

 Introduction

Examples

The Mechanics of Polymorphism
 Static and Dynamic Binding

 Abstract Classes

Private and Static Methods

2

Introduction

Polymorphism is one of the most important

concepts of object-oriented programming.

 In general, it means the occurrence of

something in multiple forms.

 In programming, polymorphism is the

ability for same code to be used with

several different types of objects and

behave differently depending on the actual

type of object used.

3

Example: Drawing Shapes

 Write a program to maintain
a list of shapes created by
the user, and print the
shapes when needed.

PointCircle

.
x, y

r

x, y

 The shapes needed in the
application are:
 points

 lines

 rectangles

 circles

 etc...

x, y w

h

Rectangle
4

In Conventional Programs

 When you use the C

language you should:

 Define the struct data type
to store parameters of the
shape

―One field is for the type of
the shape: point, circle, etc.

 Write the functions to draw
each shape (separate for
each shape).

 Check the type of the
shape first to select the
right function to draw.

typedef struct shape {
int typeS; // point = 0, circle = 1,

// ,line = 2, rectangle = 3
int x, y // parameters of the shape

. . .
} ;
shape varShape;

5

. . .
if (varShape.typeS == 1) then

DrawCircle(varShape);
else if (varShape.typeS == 3) then

DrawRectangle(varShape);
else if (varShape.typeS == 0) then

DrawPoint(varShape);
else if(varShape.typeS == 2) then

DrawLine(varShape);

Using Polymorphism

You need only to write:

 varShape.Draw()

 How to do this?

6

Example 1

class Person {
private String name;
public Person(String name){

this.name = name;
}
public String introduction() {

return "My name is " + name + ".";
}

}
class Student extends Person {

private String id;
public Student(String name, String id){

super(name);
this.id = id;

}
public String getID() { return id;}
public String introduction() {

return "I am a student. "
+super.introduction() +
" My ID is "+ id + ".";

}
}

public class PolymorphismDemo1 {
public static void main(String[] args) {

Student s =
new Student("Xiaoli","s115333");

Person p = s;
System.out.println(s.introduction());
System.out.println(p.introduction());

}
}

 Output of this program:
 I am a student. My name is

Xiaoli. My ID is s115333 .

 I am a student. My name is
Xiaoli. My ID is s115333.

7

Comments on the Previous Slide

Consider two simple classes:
 Person

 Student (this one is a subclass of Person)

Why do they print the same output?
―System.out.println(s.introduction());

―System.out.println(p.introduction());

Because the same message (introduction()) is
sent to the same object, in this case Student.

Why is the object the same (Student)?

8

Recall: Primitive Assignment

For primitive types:

num2 = num1;

Before After

5 12 5 5

num1 num2 num1 num2

9

The act of assignment takes a copy of a

value and stores it in a variable.

Recall: Reference Assignment

For object references, the reference (address, the

location) is copied:

Contents 1
Contents 2 Contents 2

objectname1 objectname2 objectname1 objectname2

10

Contents 1

objectname2 = objectname1;

Before After

Example 2

class Person {

private String name;

public Person(String name) {

this.name = name;

}

public String introduction() {

return "My name is " + name + ".";

}

}

class Student extends Person {

private String id;

public Student(String name, String id){

super(name);

this.id = id;

}

public String getID() { return id; }

public String introduction() {

return "I am a student. " + super.introduction() + "

My ID is "+ id + ".";

}

}

public class PolymorphismDemo2 {
public static void main(String[] args) {

m(new Student("Xiaoli", "s115333"));
m(new Person(“Xiaowang"));

}
public static void m(Person x) {

System.out.println(x.introduction());
}

}

 Output of this program:
 I am a student. My name is

Xiaoli. My ID is s115333 .
 My name is Xiaowang.

11

Comments on the Previous Slide

 Method m takes a parameter of the Person type.
An object of a subtype can be used wherever its
supertype value is required.
 This feature is known as polymorphism.

 When the method m(Person x) is executed, the
argument x’s introduction method is invoked. x
may be an instance of Student or Person.
Classes Student and Person have their own
implementation of the introduction method.
Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime.
 This capability is known as dynamic binding.

12

Comments on Examples 1 and 2

Example 1: The Java compiler cannot decide at
compilation time which method must be called
when the program is running:
 Introduction() of the Person class or of the Student

class
―System.out.println(s.introduction());

―System.out.println(p.introduction());

Example 2: The same situation
―System.out.println(x.introduction());

A decision is made when the program is
running.

13

Example 3

class Person {
private String name;
public Person (String name){

this.name = name;
}
public String introduction() {

return “My name is” + name + “.”;
}

}
class Student extends Person {

private String id;
public Student(String name, String id){

super(name);
this.id = id;

}
public String getID() { return id; }
public String introduction() {

return "I am a student. " +
super.introduction() + " My ID is "+ id + ".";

}
}

public class PolymorphismDemo3 {
public static void main(String[] args) {

Person[] people = {
new Person(" Xiaoli "),
new Student(“Xiaowang", “s116000"), new
Person(" Xiaozhang")};

// print information about each person
for (int i = 0; i < people.length; i++) {

System.out.println(
people[i].introduction()); }

}
}

 Output of this program:
 My name is Xiaoli .

 I am a student. My name is
Xiaowang. My ID is s115333.

 My name is Xiaozhang.

14

Comments on the Previous Slide

Example 3:

 An array of three (people) objects is created.

 The value of people[0] is a reference to the
Person(“Xiaoli”) object.

 The value of people[1] is a reference to the
Student(“Xiaowang”, “s116000”) object.

 The value of people[2] is a reference to the
Person(“Xiaozhang”) object.

15

Example 4

class Person {

private String name;

public Person(String name)

{ this.name = name;

}

public String introduction() {

return "My name is " + name +".";

}

public String getInfo() {

return introduction();

}

}

public String introduction() {

return "I am a student. "+

super.introduction()+" My ID is “ +

getID()+".";

}

}

public class PolymorphismDemo4 {

public static void main(String[] args) {

Student s =

new Student("Xiaoli","s115333");

Person p = s;

class Student extends Person {

private String id;

public Student(String name, String id){

super(name);

this.id = id;

}

public String getID() { return id; }

System.out.println(s.getInfo());

System.out.println(p.getInfo());

}
}

 Output of this program:
 I am a student. My name is

Xiaoli. My ID is s115333.
 I am a student. My name is

Xiaoli. My ID is s115333.
16

Comments on the Previous Slide

 The difference between Example 1 and this

example:
 The Person class has a public String getInfo() method.

 Why do they print the same output? (The reason is

the same as for Example 1):
―System.out.println(s.getInfo());
―System.out.println(p.getInfo());

 The following statement is wrong. (The getID

method is not in the set of the Person class

methods; the compiler produces an error

message):
―System.out.println(p.getID()); // Error

17

Static and Dynamic Binding

 Non-polymorphic methods (static methods) are “bound”

 at compile time

 called early binding or static binding.

 Polymorphic methods are “bound”

 at run time

 called late binding or dynamic binding (also called dynamic
dispatch).

 Alternate views of polymorphism:

 One objects sends a message to another object without caring
about the type of the receiving object.

 The receiving object responds to a message appropriately for its
type.

 Java methods are polymorphic by default

 static or final (private methods are implicitly final) are bound at
compile time.

18

Note: Polymorphic Methods

Like an instance method, a static method

can be inherited. However, a static method

cannot be overridden. If a static method

defined in a superclass is redefined in a

subclass, the method defined in the

superclass is hidden.

19

Note: Polymorphic Methods

class Parent {

public static void myStaticMethod() {

System.out.println("A");

}

public void myInstanceMethod() {

System.out.println("B");

}

}

public class Child extends Parent {

public static void myStaticMethod() {

System.out.println("C");

}

public void myInstanceMethod() {

System.out.println("D");

}

public static void main(String[] args) {

Parent o1 = new Parent();

Parent o2 = new Child();

Child o3 = new Child();

Parent.myStaticMethod(); //

Child.myStaticMethod(); //

o1.myStaticMethod(); //

o1.myInstanceMethod(); //

o2.myStaticMethod(); //

o2.myInstanceMethod(); //

o3.myStaticMethod(); //

o3.myInstanceMethod(); //

myStaticMethod(); //

myInstanceMethod();//

}

}

20

A
C

A

B

A
D

C

D

C
Compiler Error

Comments on the Previous Slide

 Notice that o2.myStaticMethod invokes Parent.myStaticMethod(). If

this method were truly overridden, we should have invoked

Child.myStaticMethod, but we didn't. Rather, when you invoke a

static method, even if you invoke it on an instance, as we did here,

you really invoke the method associated with the "compile-time type"

of the variable. In this case, the compile-time type of o2 is Parent.

Therefore, we invoke Parent.mStaticMethod().

21

 However, when we execute the line o2.myInstanceMethod(), we

really invoke the method Child.myInstanceMethod().

That's because, unlike static methods, instance methods CAN be

overridden. In such a case, we invoke the method associated with

the run-time type of the object. Even though the compile-time type

of o2 is Parent, the run-time type (the type of the object o2

references) is Child. Therefore, we invoke Child.myInstanceMethod

rather than Parent.myInstanceMethod().

Method Matching vs. Binding

 Matching a method signature and binding a

method implementation are two issues.

 The compiler finds a matching method according to

parameter type, number of parameters, and order

of the parameters at compilation time.

 A method may be implemented in several

subclasses.

 The Java Virtual Machine dynamically binds

the definition of the method at runtime.

22

Dynamic Binding in Java

 We can conceptually think of the dynamic binding mechanism as

follows: Suppose an object o is an instance of classes C1, C2, ..., Cn-1,

and Cn, where C1 is a subclass of C2, C2 is a subclass of C3, ..., and

Cn-1 is a subclass of Cn.

 That is, Cn is the most general class, and C1 is the most specific class.

In Java, Cn is the Object class.

 If o invokes a method p, the JVM searches the implementation for the

method p in C1, C2, ..., Cn-1 and Cn, in this order, until it is found. Once

an implementation is found, the search stops and the first-found

implementation is invoked.

Cn Cn-1 C2 C1

Since o is an instance of C1, o is also an

instance of C2, C3,…, Cn-1, and Cn
Object

23

The instanceof Operator

 Often you will get into a situation in which you need to

rediscover the exact type of the object so you can access the

extended methods of that type (see Example 2, slide 11):

Person p = new Student("Xiaoli","s115333");

System.out.println(p.getID()); // Compile-time error:
// There is no the getID method in the Person class.

 Use the instanceof operator to test whether an object is

an instance of a class:

Person p = new Student("Xiaoli","s115333");

if (p instanceof Student) {
System.out.println("Student ID:" + ((Student)p).getID());

}

24

Abstract Classes

 An abstract class is a class that is declared abstract—it

may or may not include abstract methods. Abstract

classes cannot be instantiated, but they can be

subclassed.

 An abstract method is a method that is declared without

an implementation (without braces, and followed by a

semicolon), like this:

 abstract void moveTo(double deltaX, double deltaY);

 If a class includes abstract methods, the class itself must

be declared abstract, as in:

public abstract class GraphicObject {
// declare fields
// declare non-abstract methods
abstract void draw();

}

25

Abstract Classes

 When an abstract class is subclassed, the subclass usually

provides implementations for all of the abstract methods in its

parent class. However, if it does not, the subclass must also

be declared abstract.

26

An Abstract Class Example

 In an object-oriented drawing application, you can draw

circles, rectangles, lines, and many other graphic objects.

 These objects all have certain states (for example:

position, orientation, line color, fill color) and behaviors (for

example: moveTo, rotate, resize, draw) in common.

 Some of these states and behaviors are the same for all

graphic objects—for example: position, fill color, and

moveTo. Others require different implementations—for

example, resize or draw.

 All GraphicObjects must know how to draw or resize

themselves; they just differ in how they do it. This is a

perfect situation for an abstract superclass.

27

An Abstract Class Example

 You can take advantage of the similarities and

declare all the graphic objects to inherit from the

same abstract parent object—for example,

GraphicObject, as shown in the following figure.

28

An Abstract Class Example

abstract class GraphicObject {
int x, y;
...
void moveTo(int newX, int newY) {

...
}
abstract void draw();
abstract void resize();

}

 GraphicObject is an abstract class. It has member

variables and methods that are wholly shared by all

subclasses, such as the current position and the moveTo

method.

 GraphicObject declares abstract methods (draw or

resize), that need to be implemented by all subclasses

but must be implemented in different ways.

29

An Abstract Class Example

 Each non-abstract

subclass of

GraphicObject,

such as Circle and

Rectangle, must

provide

implementations

for the draw and

resize methods

class Circle extends GraphicObject { void
draw() {

...
}
void resize() {

...
}

}
class Rectangle extends GraphicObject { void

draw() {
...

}
void resize() {

...
}

}

30

Animals: Different Ways of Talking

Animal

Dog Cow Cat

Talk Talk Talk

Dog: Woof Cow: Moo Cat: Meow

31

Solution: Different Ways of Talking

abstract class Animal {

private String name;

public Animal(String name) {

this.name=name; }

public String getName() { return name; }

public abstract void talk();

}

class Dog extends Animal {

public Dog(String name) { super(name); }

public void talk() {

System.out.println(getName()+" Woof");

}

}

class Cat extends Animal {

public Cat(String name) { super(name); }

public void talk() {

System.out.println(getName()+" Meow");

}

}

class Cow extends Animal {

public Cow(String name) { super(name); }

public void talk() {

System.out.println(getName()+" Moo");

}

}

public class AnimalReference {

public static void main(String[] args){

Animal ref = new Cow("Edna");

Dog aDog = new Dog("Humi");

ref.talk();

ref = aDog; ref.talk();

ref = new Cat("Aya");

ref.talk();

}

}

32

Output:

Edna Moo

Humi Woof

Aya Meow

Comments on the Previous Slide

 The Animal class is

abstract:

 There is no
implementation for
the talk method.

 AnimalArray class:
Animal[] ref = new Animal[3];

 Declaration of the ref
array to store three
objects of Animal type
or its subclass.

public class AnimalArray {
public static void main(String[] args) {

// assign space for an array Animal[]
ref = new Animal[3];
Random rand = new Random();

// create specific objects and put them in array
ref[0] = new Cow("Edna");
ref[1] = new Dog("Humi");
ref[2] = new Cat("Aya");
ref[rand.nextInt(3)] = new Cat("Kitty");

// Compiler does not know where Kitty is
for (int i=0;i<3;++i) {

ref[i].talk(); }
}

}

33

Note: Private Methods

 A private method is
automatically final,
and is also hidden
from the derived
class.

 f() in the Derived
class is a brand new
method; it’s not even
overloaded, since the
base- class version
of f() isn’t visible in
Derived.

public class PrivateOverride {
private void f() {

System.out.println("private f()");
}
public static void main(String[] args) {

PrivateOverride po = new Derived();
po.f();

}
}
class Derived extends PrivateOverride {

public void f() {
System.out.println("public f()");

}
}

34

Output:

private f()

Note: Static Methods

class Mother {

public static String staticGet()

{ return "Mother staticGet()"; }

public String dynamicGet()

{ return "Mother dynamicGet()"; }

}

class Child extends Mother {

public static String staticGet()

{ return "Child staticGet()"; }

public String dynamicGet()

{ return "Child dynamicGet()"; }

}

public class StaticPolymorphism {

public static void main(String[] args) {

Mother child = new Child();

System.out.println(child.staticGet());

System.out.println(child.dynamicGet());

}

}

 If a method is static,

it does not behave

polymorphically.

 Static methods are

associated with the

class and not the

individual objects.

35

Output:

Mother staticGet()

Child dynamicGet()

Summary of Polymorphism

36

 Polymorphism means “multiple forms”.

 In object-oriented programming, you have the same face (the common
interface in the base class) and different forms using that face: the
different versions of the dynamically bound methods.

 Polymorphism is a feature that cannot be viewed in isolation

(like a switch statement can, for example), but instead works

only in concert, as part of a “big picture” of class relationships.

 To use polymorphism (and thus object-oriented techniques)

effectively in your programs, you must expand your view of

programming to include not just members and messages of

an individual class, but also the commonality among classes

and their relationships with each other.

 The results are faster program development, better code
organization, extensible programs, and easier code maintenance.

