
1

CHAPTER 4

Classes and Objects



Contents

Classes

Constructors

Methods

Creating Objects

Using Objects

 Java Memory Mechanism

2



Declaring Classes

A class declaration consists of the class

keyword, a class name and its body:

class ClassName {

fields

constructors

methods

}

A class may or may not declare any of the

three components of its body.

class body

3



Implementation of a Bicycle, ver. 2

// File: Bicycle.java

public class Bicycle { // Class declaration

private int cadence; // Fields

private int gear;

private int speed;

public Bicycle(int startCadence, int
startSpeed, int startGear) {

// Constructor

gear = startGear;

cadence = startCadence;

speed = startSpeed;

}

public int getCadence() { // Methods

return cadence;

}

public void setCadence(int newValue){

cadence = newValue;

}

public int getGear() {

return gear;

}

public void setGear(int newValue) {

gear = newValue;

}

public int getSpeed() {

return speed;

}

public void applyBrake(int decrement) {

speed -= decrement;

}

} // End of class declaration

4



Comments on the Previous Slide
 The modifier public determines what other

classes can access Bicycle:

 public class Bicycle { // Class declaration

 It is common to make fields private. This means

that they can only be directly accessed from the

Bicycle class.

 private int cadence; // Fields

 We can access the field indirectly by adding public 

methods that obtain the field values for us.

 An example:
public void setCadence(int newValue){

cadence = newValue;

} 5



Overloading Methods

 Methods can be overloaded.

 Methods within a class can
have the same name, but a
different parameter list.

 Overloaded methods are
differentiated by the number
and the type of the
arguments passed into the
method.

 One cannot declare more
that 1 method with the same
name and the same
parameter list.

 The compiler does not
consider return type and
modifiers when differentiating
methods.

public class DataArtist {

...

public void draw(String s) {

...

}

public void draw(int i) {

...

}

public void draw(double f) {

...

}
public void draw(int i, double f)
{

...

}

}

6



Example: Overloading Methods

 java.io.PrintStream defines the following

overloaded methods (System.out. …):
void println() terminates the current line by writing

the line separator string

void println(float x) prints a float and then terminates the

line

void println(int x) prints an integer and then terminates

the line

void println(Object x) prints an Object and then terminates

the line

void println(String x) prints a String and then terminates the

line

7



Constructors
 Constructors are special

methods of a class.

 Constructors have the

same name as the class.

 Constructors are invoked
to create and initialize
objects.

 A class may or may not 
define a constructor.

 The default constructor 
has no arguments.

 A default constructor is 
automatically created if 
the class defines no 
constructors.

// a no-argument constructor
// default constructor
public Bicycle() {

gear = 1;
cadence = 10;
speed = 0;

}

8

// See slide 4
public Bicycle(int startCadence,

int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;

}



Example: Overloading Constructors
 java.lang.String defines these constructors:

String() A String object that is an empty

character sequence

String(byte[] value,Charset

charset)

Creates a new String by decoding

the value array using the specified

charset

String(char[] value) A new String that is the sequence of

characters currently contained in

value

String(String original) Creates a String that is a copy of the

original String

String(StringBuffer buffer) Creates a new String from the buffer

argument

9



Creating Objects
 In Java, objects are created on

the heap, and a REFERENCE to

the object is stored as a value of

the variable (in the cup, as shown

in picture). Think of it as a remote

control to a specific type of object.

 At the cafécustomers may say:

"I'd like a reference to a new

Sony32 television please, and

name it TV." which in Java:

 Sony32 tv = new Sony32();

 If you say: "declare but don't 

initialize with an actual

Sony32 object"

 Sony32 tv;
10



Creating Objects

 A class provides the blueprint for objects, i.e., an
object is created from a class.

 For example:
 String os = new String(“Name”);

 Bicycle bike1 = new Bicycle();

 Each of these statements has 3 parts:
 Declaration – the code on the left side of the assignment

operator;
 Instantiation – the keyword new is a Java operator that

creates the object;

 Initialization – the keyword new invokes the constructor
that initializes the new object.

11



Declaring a Variable to Refer to an Object

 To declare a variable, one writes a statement:

 type name;

 This statement associates name with its type.

 With a primitive variable, this declaration also

reserves the memory to store any allowed value

of the variable.

 With an object reference, the reserved memory

can only store a reference, i.e., declaring a

reference variable does not create an object:

 String str; // does not create a String object

12



Instantiating a Class
 An object is the instance of a class.

 To instantiate a class is the same as to create

an object.

 The new operator instantiates a class by

allocating memory for a new object and

returning a reference to that memory.

 Bicycle A = new Bicycle();

the
Bicycle
object

Bicycle

13



Initializing an Object

 The Point class has only
1 constructor.

 The constructor takes 2
integer arguments.

public class Point {

public int x;

public int y;

// = 0

// = 0

public Point(int a,int b) {

x = a;

y = b;

}

Point p1 = new Point(4,6);

}4

6

A Point object

p1
x

y

A Point reference

14



Example: Initializing an Object

public class Rectangle {

private Point origin;

private int width = 0;

private int height = 0;

// no argument constructor

public Rectangle() {

origin = new Point(0,0);

}

// constructor with 3 parameters

public Rectangle(Point p, int w,
int h) {

origin = p;

width = w;

height = h;

}

public int getArea() {

return width * height;

}

}

Point pt = new Point(4,6);

Rectangle rc = new Rectangle(pt,10,20);

4x

y 6

A Point object

pt

10

20

width

height

origin

A Rectangle object

rc

15



Steps to Create an Object

 Objects are created by
invoking the operator new
on a class.

 The keyword new is
followed by a constructor
of the class to be
instantiated.

 A constructor is invoked
after the fields have been
initialized.

 Steps to create an object
are:

1. Allocate the memory for
the fields;

2. Initialize fields;

3. Invoke the constructor;

4. Return the reference.

class Demo1{

int di = 5; // 1.

int dj; // 2. dj = 0

Demo1() {

dj = 4; // 3-1.

}

Demo1(int j) {

dj = j; // 3-2

}

}

Demo1 oa1 = new Demo1(); // case 3-1.

Demo1 oa2 = new Demo1(6); // case 3-2.

always

and

first

16

only

one



Defining Methods

 A typical method declaration:
public double methodName(double parameter, …) {

… // method body

}

 A method declaration has 6 components:
 A modifier – such as public, private, etc.

 The return type – the data type of the value returned by the 
method, or void if no value is returned.

 The method name - names should begin with a letter (a-z, A-Z), 
followed by letters, digits, dollar signs, or underscores.

 The parameter list in parenthesis – a list delimited by commas. A
method may have no parameters.

 An exception list – exceptions are used in error handling.
 The method body – the method's code.

17



Invoking an Object’s Methods

 An object‘s reference is used to invoke a method
on that object, as in:
objectReference.methodName(argumentList);

 For example:
 int area = new Rectangle().getArea();

 A reference to an object must be initialized
before being used.

 Examples:
Rectangle rec; // not initialized
int area = rec.getArea(); // error

rec = new Rectangle(); // initialization
area = rec.getArea(); // correct

18



Parameters of a Method or Constructor

 Parameters refer to the list of variables in a
method declaration.

 The declaration for a method or a constructor
declares the parameters for that method or
constructor:
 public void method(int a,int b,char c) { … }

 Arguments are the actual values that are passed
in when the method is invoked.

 The arguments must match the parameters in
type and order:
 method(4,6,'8');
 method(4,6,8); // error

19



Parameter Types

Any data type may be used for a

parameter of a method or a constructor.

For example:

 void method(int i) { … }

 void method(int i,String s) { … }

 void method(String s) { … }

 void method(String s,Object o,int i) { … }

20



Passing Primitive Data Type Arguments

 Primitive arguments,
such as an int or a float,
are passed into
methods by value.

 If a parameter changes
its value in the method,
that changed value
exists only within the
scope of that method.
When the method
returns, the parameters
are gone and any
changes to them are
lost.

public class PassPrimitiveByValue {
public static void main(String[] args)

int x = 3;

// invoke passMethod() with x as
// argument

passMethod(x);
// print x to see if its value has
// changed

System.out.println(

"After invoking passMethod, x = " + x);

}
// change parameter in passMethod()

public static void passMethod(int p) {

p = 10;

}

}

The output of this program is:

After invoking passMethod, x = 3
21



Passing Reference Data Type Arguments

 Java passes everything by
value.

 With primitives, you get a
copy of the contents.

 When you pass an object
reference into a method, you
are passing a COPY of the
REFERENCE.
 Example on the right: There is

still just ONE Cat object. But
now TWO remote controls
(references) can access that
same Cat object.

Cat A = new Cat();

doStuff(A);

void doStuff(Cat B) {

// use B in some way

}

22



Passing Reference Data Type Arguments

 You can change the

Cat, using your new

B reference (copied

directly from A), but

you can't change A.

 Example on the right:

B = new Cat();

 Statement above

simply "points" B to

control a different

object.

Cat A = new Cat();

doStuff(A);

void doStuff(Cat B) {

B = new Cat(); // did NOT affect
// the A reference

}

23



The Garbage Collector
 Java uses a garbage

collector to free the
memory used by
objects that are not
referenced any more.

 An object can be
garbage collected
when there are no
references to that
object.

 Garbage collection is
automatic.

Point p1 = new Point(0,0);

Point p2 = p1;

 After execution of the two
statements above, there are 2
references to the Point(0,0)
object.

p1 = null; // 1 reference

p2 = null; // 0 references

 The Point(0,0) object is eligible
for garbage collection.

24



The this Keyword
 ‘this' is a reference to

the current object.

 It can be used within an 

instance method or a 

constructor of a class.

 The most common reason 

for using the 'this' keyword 

is because a field is 

shadowed by a method

or constructor parameter.

public class Point {

public int x = 0;

public int y = 0;

//constructor
public Point(int x, int y) {

this.x = x;

this.y = y;
}

}

 Example above:
 Each argument to the constructor

shadows one of the object's
fields—inside the constructor x is
a local copy of the constructor's
first argument. To refer to the
Point field x, the constructor must
use this.x.

25



The this Keyword

 ‘this' can be used 
within a constructor to 
invoke another 
constructor of the 
same class.

class AA {

int x,y;

AA() {

this(0,0);

};

AA(int xx,int yy) {

x = xx;

y = yy;

}

}

invoke

26



Controlling Access to Members of a Class

 Access level modifiers determine whether other

classes can access a field or invoke a method.

 There are 2 levels of access control:

 At the top level – package-private (no explicit modifier
stated) or public.

 At the member level – package-private (no explicit 
modifier stated), public, private, or protected.

 When a class is declared public, it is visible to all 

classes everywhere.

 If a class has no modifier, it is visible only within

its package.

27



Controlling Access to Members of a Class

 The first data column indicates whether the class itself

has access to the member defined by the access level.

 The second column indicates whether classes in the

same package as the class (regardless of their

parentage) have access to the member.

 The fourth column indicates whether all classes have

access to the member.

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no

modifier

Y Y N N

private Y N N N

28



Visibility

Alpha

Beta

AlphaSub

Gamma

Package One Package Two

Subclass

Modifier Alpha Beta AlphaSub Gamma

public Y Y Y Y

protected Y Y Y N

no

modifier

Y Y N N

private Y N N N

29



Tips on Choosing an Access Level

 Use the most restrictive access level that makes

sense for a particular member. Use private unless

you have a good reason not to.

 Avoid public fields except for constants. (Many of

the examples in the book use public fields. This

may help to illustrate some points concisely, but is

not recommended for production code.) Public

fields tend to link you to a particular implementation

and limit your flexibility in changing your code.

30



Class Variables (or Static Fields)
 Each object has its own

copy of instance variables
(fields).

 Class variables (static
fields) are common to all
objects of that class (only
one copy exist).

 Class variables are
associated with the class.

class AA {

int aak;

static String cv;

AA(int i) { aak = i; }

}

AA o1 = new AA(5);

AA o2 = new AA(6);

AA.cv = "2"; // or o1.cv = "2";
5 aak

6aak

o2

2cv

AA.cv

31

o1



Class Methods (or Static Methods)

 Static methods, like static
fields, belong to the class.

 A class method can be
invoked with the class
name or an object
reference:
 className.method(args)

AA.clsMethod();

 instanceName.method(args)

AA oa = new AA();

oa.clsMethod();

 A common use for static
methods is to access static
fields.

class AA {

int aak;

static int cv;

void method() {

this.aak = 3;

cv = 2;

}

static void clsMethod() {

cv = 4;

this.aak = 5; // error

}

}

32



Constants

A constant uses the final keyword.

A constant can be initialized, but cannot

change its value.

Examples:

 final int value = 3; // initialized

value = 5; // error

 final int value; // not initialized

value = 5; // initialized

value = 6; // error

33



Java Memory Mechanism

34

Heap

Method Area

JVM 
Stack

Native 
Method 

Stack

Program Counter 
Register

Thread-shared

Thread-private

Java runtime memory



Java Memory Mechanism

35
Large-numbered

memory addresses

Small-numbered

memory addresses

Heap memory grows downward.

Stack memory grows upward.

static, special
1000

2000

FFFF

static variable , constant

…

heap: object

stack: local variable



Java Memory Mechanism

Example：

36

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public void move(int dx,int dy){
x+=dx;
y+=dy;

}
}

1000

1004

1008

100C

1010

1014

…

FFFF

FFFB

FFFC

100C

1000

begin

begin

begin

x

y

x

y

2

3

4

5

p2

p1

Heap

Stack

public void run(){
Point p1 = new Point(2,3);
Point p2 = new Point(4,5);
p1.move(1, 2);

}



Java Memory Mechanism

37

1000

1004

1008

100C

1010

1014

…

FFFF

FFFB

FFFC

100C

1000

begin

begin

begin

x

y

x

y

2→3

3→5

4

5

p2

p1

Heap

Stack

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public void move(int dx,int dy){
x+=dx;
y+=dy;

}
}

FFF4

FFF0

FFEC

FFEB

begin

1000

2

1

dy

dx

this

Example：

public void run(){
Point p1 = new Point(2,3);
Point p2 = new Point(4,5);
p1.move(1, 2);

}



Java Memory Mechanism

38

1000

1004

1008

100C

1010

1014

…

FFFF

FFFB

FFFC

100C

1000

begin

begin

begin

x

y

x

y

3

5

4

5

p2

p1

Heap

Stack

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public void move(int dx,int dy){
x+=dx;
y+=dy;

}
}

FFF4

FFF0

FFEC

FFEB

begin

1000

2

1

dy

dx

this

release

Example：

public void run(){
Point p1 = new Point(2,3);
Point p2 = new Point(4,5);
p1.move(1, 2);

}



Java Memory Mechanism

References

• https://baijiahao.baidu.com/s?id=160430821674

8480477&wfr=spider&for=pc

• https://blog.csdn.net/sinat_23092639/article/det

ails/50703920

39

https://baijiahao.baidu.com/s?id=1604308216748480477&wfr=spider&for=pc
https://blog.csdn.net/sinat_23092639/article/details/50703920

