
Java Programming

CHAPTER 1 & 2

Introduction to Objects

1



Contents

The Java Technology Phenomenon

The " Welcome to Java!" Application

What is an Object?

What is a Class?

Online Documentation C++

Java

C is a  

subset of  

Java, C++

2



The Java Technology Phenomenon

 Java technology

 The Java programming language

 The Java platform

 The Java programming language is a high-level

language that can be characterized:

Each of these words is explained in The Java Language

Environment http://www.oracle.com/technetwork/java/langenv-140151.html

Simple Architecture neutral

Object oriented Portable

Distributed High performance

Multithreaded Robust

Dynamic Secure

3



The Java programming language

 All source code is first written in plain text files ending  

with the .java extension.

 Those source files are then compiled into .class files by  

the javac compiler. A .class file does not contain code  

that is native to your processor; it contains bytecodes —

the machine language of the Java Virtual Machine (Java  

VM).

 The java launcher tool then runs your application with an  

instance of the Java Virtual Machine.

4



The Java VM

 The Java VM is  

available on many  

different operating  

systems.

 The same .class files

may run on

 Microsoft Windows,

 the Solaris TM

Operating System  

(Solaris OS),

 Linux, or

 Mac OS.
5



The Java Platform

 The Java platform has two components:

 The Java Virtual Machine

 The Java Application Programming Interface (API)

 The API is a large collection of ready-made  

software components.

 The API provides many useful capabilities:

 It is grouped into libraries of related classes 
and  interfaces;

 These libraries are known as packages.

6



The Java Platform

 The API and Java Virtual Machine insulate (protect) the  

program from the underlying hardware.

 As a platform-independent environment, the Java  

platform can be a bit slower than native code. However,  

advances in compiler and virtual machine technologies  

are bringing performance close to that of native code  

without influencing portability.

7



What Can Java Technology Do?

 Development Tools: They provide everything you need for  

compiling, running, monitoring, debugging, and  

documenting your applications. The main tools are

 The compiler: javac

 The launcher: java

 the documentation tool: javadoc.

 Application Programming Interface (API): The API  

provides the core functionality of the Java language:

 It offers a wide array of useful classes ready for use in yourown
applications.

 It spans everything from basic objects, to networking and security, to  
XML generation and database access, and more.

 The core API is very large: The Java SE Development Kit 6 (JDKTM

6) documentation http://docs.oracle.com/javase/6/docs/index.html.

8

http://java.sun.com/javase/6/docs/index.html


What Can Java Technology Do?

 Deployment Technologies: The JDK software provides  

standard mechanisms such as the Java Web Start  

software and Java Plug-In software for deploying your  

applications to end users.

 User Interface Toolkits: The Swing and Java 2D  

toolkits make it possible to create sophisticated  

Graphical User Interfaces (GUIs).

 Integration Libraries: Integration libraries such as the  

Java IDL API, JDBCTM API, Java Naming and Directory  

InterfaceTM ("J.N.D.I.") API, Java RMI, and Java Remote  

Method Invocation over Internet Inter-ORB Protocol  

Technology (Java RMI-IIOP Technology) enable  

database access and manipulation of remote objects.

9



The " Welcome to Java!" Application

/**

* The Welcome class

* implements an application that

* simply displays "Welcome to Java!"

* to the standard output.

*/

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

//Display the string.

}

}

 How to create, compile  

and run:

 Start your favorite text editor  
(e.g. Vim, emacs).

 Type the code (left side of  
the slide).

 Save the text to the file:
Welcome.java

 Compile the program typing:
javac Welcome.java

 Run the program typing:
java Welcome

 Output of the program:
Welcome to Java!

10



A Closer Look at
the "Welcome to Java!" Application

 The "Welcome to Java" application consists of  

three primary components:

 source code comments,

 the Welcome class definition, and

 the main method.

 Try to find out those keys:

• Class name • Main method

• Statements • Statement terminator

• Reserved words

11



// This program prints Welcome to Java! 

public class Welcome {

public static void main(String[] args) { 

System.out.println("Welcome to Java!");

}

}

Every Java program must have at least one class. 

Each class has a name. By convention, class names 

start with an uppercase letter. In this example, the 

class name is Welcome. 

Class name

12



// This program prints Welcome to Java! 

public class Welcome {

public static void main(String[] args) { 

System.out.println("Welcome to Java!");

}

}

Main Method

Line 2 defines the main method. In Java, every 

application must contain a main method. 

In order to run a class, the class must contain a 

method named main. The program is executed from 

the main method. 

13



// This program prints Welcome to Java! 

public class Welcome {

public static void main(String[] args) { 

System.out.println("Welcome to Java!");

}

}

Statement

A statement represents an action or a sequence of 

actions. The statement 
System.out.println("Welcome to Java!") 

in the program in Listing 1.1 is a statement to 

display the greeting "Welcome to Java!“.

14



// This program prints Welcome to Java! 

public class Welcome {

public static void main(String[] args) { 

System.out.println("Welcome to Java!");

}

}

Statement Terminator

Every statement in Java ends with a semicolon (;).

15



// This program prints Welcome to Java! 

public class Welcome {

public static void main(String[] args) { 

System.out.println("Welcome to Java!");

}

}

Reserved words

Reserved words or keywords are words that have a specific 

meaning to the compiler and cannot be used for other 

purposes in the program. For example, when the compiler 

sees the word class, it understands that the word after class 

is the name for the class. 

16



What is an Object?

Objects are key to understanding object-

oriented technology.

Real world objects are around us (e.g., dogs,  

bicycles, cars, houses, tables, people).

Objects share 2 characteristics:

 State – the data of  
interest (e.g., people  
have a name, hair color,  
date of birth, etc.)

 Behavior – what objects
do (e.g., people walk, eat, read, etc.)

17



Example

Example: Dogs have

 state (or properties)
―name, color, eye color, height, length, weight.

 behavior (or methods)
―barking, fetching, sitting, laying down, wagging tail.

18



Example – A Car

State Behavior

Color:White

Name:RAV4

Wheels: 4

Height: 1.65m

Straight forward

Stop

Move backward

Weight: 1.7 t

  ...

Wheel 

You can add more states and behaviors,
such as: owner, life_time……

19



Software Objects

Software objects are conceptually similar  

to real-world objects: They consist of state  

and related behavior.

 An object stores its state in fields (variables in
some programming languages).

 An object exposes its behavior through  
methods (functions in some programming  
languages). Methods operate on an object's  
internal state and serve as the primary  
mechanism for object-to-object  
communication.

20



What is Encapsulation?

Hiding internal state and requiring all  

interaction to be performed through an  

object's methods is known as data  

encapsulation — a fundamental principle  

of object-oriented programming.

 In other words, there is not direct access to  

the fields of the object.

21



Software Objects: Benefits

 Modularity

 The source code for an object can be written and maintained
independently of the source code for other objects.

 Information-hiding

 By interacting only with an object's methods, the details of its  
internal implementation remain hidden from the outside world.

 Code re-use

 If an object already exists (perhaps written by another software  
developer), you can use that object in your program.

 Pluggability and debugging ease

 If a particular object turns out to be problematic, you can simply  
remove it from your application and plug in a different object as  
its replacement. This is analogous to fixing mechanical problems  
in the real world. If a bolt breaks, you replace it, not the entire  
machine.

22



What Is a Class?
 In the real world, there are many  

individual objects all of the same  

kind. There may be thousands of  

other bicycles in existence, all of the  

same make and model.

 Each bicycle was built from the  

same set of blueprints (detailed plan,  

pattern) and therefore contains the  

same components.

 In object-oriented terms, we say that  

your bicycle is an instance of the  

class of objects known as bicycles.

Class Bicycle

Two objects of

the Bicycle class

23



What Is a Class?

A class is the blueprint (detailed plan,  

template) from which individual objects 

are created.

 It defines the characteristics and behaviors  

of all objects of a certain type.

 In other words, a class is an abstraction  

that contains the attributes and behaviors  

common to all objects of a given type.

24



Implementation of a Bicycle
// File: BicycleDemo.java

class Bicycle { // fields or attributes

int cadence = 0;  

int speed = 0;  

int gear = 1;

Bicycle() { // constructor

}

cadence = 0;

speed = 0;

gear = 1;

// methods

void changeCadence(int newValue) {  

cadence = newValue;

}

void changeGear(int newValue) {  

gear = newValue;

}

void speedUp(int increment) {  

speed = speed + increment;

}

void applyBrakes(int decrement) {  

speed = speed - decrement;

}

void printStates() { System.out.println( "cadence:―

+  cadence+ " speed:"+speed+" gear:"+gear);

}

}  // end of the Bicycle class

class BicycleDemo {

public static void main(String[] args) {

// Create two different Bicycle objects  

Bicycle bike1 = new Bicycle();  

Bicycle bike2 = new Bicycle();

bike1.speedUp(10);  // Invoke methods on those

bike1.printStates(); // objects  

bike2.changeCadence(50);  

bike2.speedUp(15);  

bike2.printStates();

}

}
25



Comments on the Previous Slide
 The fields cadence, speed, and gear represent the  

object's state, and the methods (changeCadence,  

changeGear, speedUp etc.) define its interaction with the  

outside world.

 The responsibility of creating and using new Bicycle  

objects belongs to the BicycleDemo class.

 Compile

 javac BicycleDemo.java

 Run:

 java BicycleDemo

 Output?

26



What is the Difference between a
Class and a Object?

One class – many objects: The class tells

the Java virtual machine how to make an object  

of that particular type. Each object made from  

that class can have its own values for the  

instance variables.

27



Procedural versus Object-Oriented

// type

DATA & PROCEDURES: encapsulation

class People { // type 

private String name;  

private String hairColor;  

private String dateOfBirth;

// constructor

People(String name,String color,…)

// methods

public void eat()  

public void read()  

public walk()

}

DATA

typedef struct people {

char* name;

char hairColor[32];

char dateOfBirth[128];

} People;

PROCEDURES

People* createPeople(char* name, …)

void eat(People* people)  

void read(People* people)  

void walk(People* people)

28



Comments on the Previous Slide
 Procedural approach:

 Functions are introduced to reduce the size of the  
programs, improve readability in them, and simplify  
the debugging process of large programs.

 The original data may easily get corrupted:
―  The data are accessible to all the functions, even to those

which do not have any right to access them.

 Object-oriented approach:

 The data and the functions, which are supposed to  
have the access to the data, are put into one box 
known as an object.

 There are no chances of any unauthorized access to  
the data.

 See slide: Software Objects: Benefits (Sl. 24).
29



Online Documentation

 Java provides online documentation for

the whole environment:

 How to compile and execute programs;

 JDK classes and their methods;

 Many example programs;

 Many documents that address different topics  
in Java.

http://docs.oracle.com/javase/8/

30



Online Documentation

31



Java API Documentation

32



Get Started – New Project

33



Get Started – New Class

34



Get Started  - Hello World

35



JDK Installation

36

JDK Download: 
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

http://jingyan.baidu.com/article/363872ecd62f5f6e4ba16fcb.html

JDK configuration:
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html


