
CHAPTER 5

Inheritance

1

Contents

 Inheritance: Key Definitions

The Purpose of Inheritance

An Example of Inheritance

What You Can Do in a Subclass

Private Members in a Superclass

Casting Objects

Overriding Methods

Hiding Fields

 IS-A versus HAS-A Relations

The Object Class as a Superclass
2

Inheritance: Key Definitions

A class that is derived from another class is

called a subclass (also a derived class,

extended class, or child class).

The class from which the subclass is derived

is called a superclass (also a base class or a

parent class).

Every class has one and only one direct

superclass (single inheritance).

Only java.lang.Object has no superclass.

Every class is implicitly a subclass of Object.
3

The Purpose of Inheritance

The idea of inheritance is simple but

powerful:

 When you want to create a new class and
there is already a class that includes some
of the code that you want, you can derive
your new class from the existing class.

 In doing this, you can reuse the fields and
methods of the existing class without
having to write (and debug!) them
yourself.

4

Single Inheritance

 In Java, a class can have only 1

direct superclass (single inheritance).

java.io.OutputStream

org.omg.CORBA.portable.OutputStream

java.awt.Component

java.awt.Canvas

java.awt.Container

java.awt.Paneljava.io.ObjectOutputStream

java.awt.Window

java.awt.Button

java.lang.Object

 A class that is the
superclass to
another class, may
also have a
superclass.

 A hierarchy of
classes can be
formed, and they all
descend from all the
superclasses.

5

The Java Platform Class Hierarchy
 The Object class, defined in the java.lang package, defines

and implements behavior common to all classes—including
the ones that you write.

 In the Java platform, many classes derive directly from
Object, other classes derive from some of those classes,
and so on, forming a hierarchy of classes.

6

Inheritance: A Closer Look

 A subclass inherits all the public and protected

members (fields, methods) from its superclass.

 When a subclass inherits a member, it is as if the
subclass defined the member itself.

 Constructors are not members, so they are

not inherited by subclasses.

 The constructor of the superclass can be

invoked from the subclass by using the

keyword super.

7

A Hierarchy of Bicycle Classes

RoadBike MountainBike TandemBike

Bicycle (superclass):
more general features Bicycle

8RoadBike, MountainBike, TandemBike (subclasses): more specific features

Comments on the Previous Slide

 In chapter 2, you considered an example of the

bicycle class.

 Different kinds of objects often have a certain

amount in common with each other.

 Bicycle is superclass (more general features).

 Mountain bikes, road bikes, and tandem bikes share
the characteristics of bicycles:
―current speed,

―current pedal cadence,

―current gear.

 MountainBike, RoadBike, and TandemBike are
subclasses of Bicycle (more specific features).

9

An Example of Inheritance
public class Bicycle { // the Bicycle class has three fields

protected int cadence;

protected int gear;

protected int speed; // the Bicycle class has one constructor

public Bicycle(int startCadence, int startSpeed, int startGear) {

gear = startGear;

cadence = startCadence;

speed = startSpeed;

} // the Bicycle class has four methods

public void setCadence(int newValue) {

cadence = newValue;

}

public void setGear(int newValue) {

gear = newValue;

}

public void applyBrake(int decrement) {

speed -= decrement;

}

public void speedUp(int increment) {

speed += increment;

}

}
10

An Example of Inheritance
 A class declaration for a MountainBike class that is a

subclass of Bicycle might look like this:

public class MountainBike extends Bicycle {
// the MountainBike subclass adds one field

protected int seatHeight;
// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startCadence, int
startSpeed, int startGear){
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;

}
// the MountainBike subclass adds one method

public void setHeight(int newValue){
seatHeight = newValue;

}
}

 MountainBike inherits all the fields and methods of Bicycle

and adds the field seatHeight and a method to set it. A new

MountainBike class has four fields and five methods.
11

What You Can Do in a Subclass

 You can use the inherited members as is, replace

them, hide them, or supplement them with new

members:

 The inherited fields can be used directly, just like any other fields.

 You can declare new fields in the subclass that are not in the
superclass.

 The inherited methods can be used directly as they are.

 You can write a new instance method in the subclass that has the
same signature as the one in the superclass, thus overriding it.

 You can write a new static method in the subclass that has the
same signature as the one in the superclass, thus hiding it.

 You can declare new methods in the subclass that are not in the
superclass.

 You can write a subclass constructor that invokes the constructor
of the superclass, either implicitly or by using the keyword super.

12

Private Members in a Superclass
 A subclass has no access to a

private field or method of its
superclass.

 If the superclass has public or
protected methods for accessing its
private fields, these can also be used
by the subclass.

class AA {

private int aak;

protected float aaf;

public setAAK(int aak) {

this.aak = aak;

}

}

class BB extends AA {

private int bbk;

BB() {

aak = 5;

setAAK(5);

aaf = 0F;

bbk = 4;

}

}

class AA {

public AA(int i) { … }

private AA(float f) { … }

private void m1() { … }

public void m2() { … }

}

class BB extends AA {

BB(){

super(5.0F);

}

BB(int i,float f){

super(i);

m1();

m2();

}

}

13

// error

// correct

// correct

// error // error

// correct

Casting Objects
 We have seen that an object is of the data type of

the class from which it was instantiated:
MountainBike myBike = new MountainBike();

 myBike is of type MountainBike in the example.

 MountainBike is descended from Bicycle and Object.

Therefore, a MountainBike is a Bicycle and is also

an Object, and it can be used wherever Bicycle or

Object objects are called for.

 The reverse is not necessarily true: a Bicycle may be

a MountainBike, but it isn't necessarily. Similarly, an

Object may be a Bicycle or a MountainBike, but it

isn't necessarily.
14

Casting Objects
 Casting shows the use of an object of one type in

place of another type, among the objects permitted

by inheritance and implementations.

Object obj = new MountainBike();

 obj is both an Object and a Mountainbike (until

such time as obj is assigned another object that is

not a Mountainbike). This is called implicit casting.

 If, on the other hand, we write:
MountainBike myBike = obj; // error

 we would get a compile-time error because obj is

not known to the compiler to be a MountainBike.

15

Casting Objects
 We can tell the compiler that we promise to assign

a MountainBike to obj by explicit casting:
MountainBike myBike = (MountainBike)obj;

 This cast inserts a runtime check that obj is

assigned a MountainBike so that the compiler can

safely assume that obj is a MountainBike. If obj is

not a Mountainbike at runtime, an exception will be

thrown.

 To avoid run-time errors, use the instanceof:
if(obj instanceof MountainBike) {

MountainBike myBike = (MountainBike)obj;

}

 This code verifies that obj refers to a MountainBike so that we can make the

cast with knowledge that there will be no runtime exception thrown.
16

Overriding Instance Methods
 Overriding means that a

subclass redefines a

method from a superclass

when:
 Both methods have the

same signature;
 Both methods have the

same return type.

 A covariant return type –

an overriding method can

also return a subtype of

the type returned by the

overridden method.

 By using the keyword

super, the overridden

method can be invoked.

class AA {
Object method(int i) {

Object oo;
…

return oo;
// end of the method
// end of the AA class

class BB extends AA {
String method(int k) {

String os;
Object oo = super.method(5);

…
return os;
// end of the method
// end of the BB class

String os = new BB().method(4);

}

}

}

}

17

Overriding Class Methods

 If a subclass defines a class method with
the same signature as its superclass, the
subclass’ method hides the superclass’
method.

The distinction between hiding and
overriding is important when invoking:
 The subclass version of an overridden

method gets invoked.

 The version that gets invoked depends on the
namespace from which it is invoked.

18

Example: Overriding and Hiding Methods
public class Animal {

public static void testClassMethod() {

System.out.println("The class method in Animal.");

}

public void testInstanceMethod() {

System.out.println("The instance method in Animal.");

}

} // end of the Animal class

public class Cat extends Animal {

public static void testClassMethod() {

System.out.println("The class method in Cat.");

}

public void testInstanceMethod() {

System.out.println("The instance method in Cat.");

}

public static void main(String[] args) {

Cat myCat = new Cat();

Animal myAnimal = myCat;

Animal.testClassMethod();

myAnimal.testInstanceMethod();

}

} // end of the Cat class

 Compile and run:

 Save the text to the

file: Cat.java

 Compile the

program typing:

javac Cat.java

 Run the program

typing: java Cat

 Output of the

program:

The class method in Animal.

The instance method in Cat.

19

Comments on the Previous Slide

The Cat class overrides the instance

method in Animal and hides the class

method in Animal.

The main method in this class creates an

instance of Cat and calls testClassMethod()

on the class and testInstanceMethod() on

the instance.

The version of the hidden method that gets

invoked is the one in the superclass, and

the version of the overridden method that

gets invoked is the one in the subclass.
20

Example: Overriding Methods

class AA {

void insMethod() { … }

}

class BB extends AA {

void insMethod() { … }

}

AA oa = new AA();

oa.insMethod(); // AA

BB ob = new BB();

ob.insMethod(); // BB

oa = ob;

oa.insMethod() // BB

class AA {

static void stcMethod() { … }

}

class BB extends AA {

static void stcMethod() { … }

}

AA.stcMethod();

BB.stcMethod();

AA oa = new AA();

oa.stcMethod(); // AA

oa = new BB();

oa.stcMethod(); // AA

21

Overriding Methods: Summary

 A subclass can redefine the methods it inherits

from its superclass:

 Overriding instance methods

 Hiding class methods

 Defining a method with the same signature:

Superclass instance

methods

Superclass static

methods

Subclass

instance methods

Overrides Generates a

compile-time error

Subclass static

methods

Generates a

compile-time error

Hides

22

Hiding Fields
 A subclass field that

has the same name

as a superclass

field hides the

superclass’ field.

 Use the keyword
super to access
a hidden field of
the superclass.

 Avoid hiding fields:
It makes code
difficult to read.

class AA {

int field1;

int field2;

}

class BB extends AA {

int field1;

void method() {

field1 = 0;

super.field1 = 2;

field2 = 4;

}

}

23

Accessing Superclass Members
public class Father {

public void printMethod() {
System.out.println("Printed in Father class.");

}
} // end of the Father class
public class Son extends Father {

//overrides printMethod in Father class
public void printMethod() {

super.printMethod();
System.out.println("Printed in Son class");

}
public static void main(String[] args) {

Son s = new Son();
s.printMethod();

}
}// end of the Son class

 Compile and run:
 Save the text to the file:

Son.java

 Compile the program

typing:

javac Son.java

 Run the program typing:

java Son

 Output of the program:

?

If your method overrides

one of its superclass's

methods, you can invoke

the overridden method

through the use of the

keyword super.

24

Example: super and Members

public class AA {

private int field1;

protected int field2;

}

public class BB extends AA {

private int field1;

void method() {

field1 = 0;

super.field1 ≠ 2;

field2 = 4;

}

// error

}

class AA extends Object {

public String toString() {

String s = super.toString();

return "AA:" + s;
}

}

class BB extends AA {

public String toString() {

String s = super.toString();

return “BB:” + s;
}

}

Object

AA

BB

25

super and Constructors
 MountainBike is a subclass of Bicycle. Here is the

MountainBike (subclass) constructor that calls the

superclass constructor and then adds initialization code of

its own:

public MountainBike(int startHeight, int startCadence, int
startSpeed, int startGear) {

super(startCadence, startSpeed, startGear);

seatHeight = startHeight;

}

 Invocation of a superclass constructor must be the first

line in the subclass constructor:

super(); // the superclass no-argument constructor is called

--or–

super(parameter list); // the superclass constructor with a matching
// parameter list is called.

26

super and Constructors

 If a constructor does not explicitly invoke a superclass

constructor, the Java compiler automatically inserts a call

to the no-argument constructor of the superclass.

 If the super class does not have a no-argument

constructor, you will get a compile-time error.

 Object does have such a constructor, so if Object is the

only superclass, there is no problem.

 If a subclass constructor invokes a constructor of its

superclass, either explicitly or implicitly, you might think that

there will be a whole chain of constructors called, all the

way back to the constructor of Object.

 It is called constructor chaining, and you need to be aware of it

when there is a long line of class descent.

27

Constructor Chaining
// File: Cartoon.java

class Art {
Art() {

System.out.println("Art constructor");
}

} // end of Art class
class Drawing extends Art {

Drawing() {
System.out.println("Drawing constructor");

}
} // end of the Drawing class
public class Cartoon extends Drawing {
Cartoon() {

System.out.println("Cartoon constructor");
}
public static void main(String[] args) {
Cartoon x = new Cartoon();

}
} // end of the Cartoon class

 Compile and run:

 Save the text to the

file: Cartoon.java

 Compile the

program typing:

javac Cartoon..java

 Run the program

typing:

java Cartoon.

 Output of the

program:

Art constructor

Drawing constructor

Cartoon constructor

28

Summary

 Object is the root (or top) of any class

hierarchy in Java.

 All other classes are inherited from Object,

either directly or indirectly.

 A class inherits fields and methods from all its

superclasses.

 A subclass may:

 Override accessible inherited methods

 Hide accessible fields or methods

29

Hierarchy of Classes: IS-A Relationship

Vehicle Boat extends Vehicle

SailBoat extends Boat

PowerBoat extends Boat

Automobile extends Vehicle

Car extends Automobile

Truck extends Automobile

Vagon BoatAutomobile

Sailboat PowerBoatTruckCar
Vagon extends Vehicle

Sailboat IS-A Boat (ALWAYS)

Boat IS- A Vehicle (ALWAYS)

and

SailBoat IS-A Vehicle (ALWAYS)

A Sailboat can do anything

Boat b = new Sailboat();

Vehicle v = new Boat();

Vehicle v = new Sailboat();

Boat b1 = new Vehicle(); //error

// Vehicle IS NOT ALWAYS a Boat
A Vehicle can do.

30

Reusing Classes

 Inheritance: A new class is created as a type

of an existing class. You take the form of the

existing class and add code to it without

modifying the existing class. The compiler

does most of the work.

 IS-A relationship between classes.

Composition: A new class is composed of

objects of existing classes. You reuse the

functionality of the code, not its form.

 HAS-A relationship between classes.

31

Example: Composition (HAS-A Relationship)

class Engine {
public void start() {}
public void rev() {}
public void stop() {}

} // end of the Engine class
class Wheel {

public void inflate(int psi) {}
} // end of the Wheel class
class Window {

public void rollup() {}
public void rolldown() {}

} // end of the Window class
class Door {

public Window window = new Window();
public void open() {}
public void close() {}

} // end of the Door class

public class Car {
public Engine engine = new Engine();
public Wheel[] wheel = new Wheel[4];
public Door

left = new Door(), // first door
right = new Door(); // 2-door

public Car() { // constructor
for(int i = 0; i < 4; i++)

wheel[i] = new Wheel();
} // end of the constructor
public static void main(String[] args) {

Car car = new Car();
car.left.window.rollup();
car.wheel[0].inflate(72);

} // end of the main method
} // end of the Car class

32

Comments on the Previous slide

 We have classes:

Engine, Wheel,
Window, Door, and

Car.

 The Door class is

composed of the

object of class

Window.

 The Car class is

composed of the

objects of classes

Engine, four Wheels,

two Doors.

Car HAS-A Engine

Car HAS-A Wheel

Car HAS-A Door

Door HAS-A Window

33

The Object Class as a Superclass

 The Object class, in the java.lang package, is the

root of the class hierarchy tree.

 Every class inherits the instance methods of Object.

 The methods defined by Object are:

 clone – creates and returns a copy of itself;

 equals – checks whether another object is equal to
this one;

 getClass – returns the runtime class of an object;

 toString – returns a string representation of the object.

34

The equals Method

 This method compares 2 objects for equality and

returns true if they are equal.

 The implementation by Object tests whether the

references are equal, i.e., if it is the same object:

public boolean equals(final Object obj) {

return obj == this;

}

35

The equals Method: Example 1

class Book { private int

price;

private String ISBN;

public Book(int price, String

ISBN) {

this.price = price;

this.ISBN = ISBN;

}

public int getPrice() {

return price;

}

public getISBN() {

return ISBN;

}

Book firstBook = new Book(1250, "0201914670");

Book secondBook = new Book(1250, "0201914670");

Book thirdBook = secondBook;

if (firstBook.equals(secondBook)) {

System.out.println("objects 1 and 2 are equal");

} else {

System.out.println("objects 1 and 2 are not equal");

}

if (thirdBook.equals(secondBook)) {

System.out.println("objects 2 and 3 are equal");

} else {

System.out.println("objects 2 and 3 are not equal");

}

}

 secondBook and thirdBook are two names for the same object

 Values of firstBook and secondBook are different references.

36

OUTPUT:

objects 1 and 2 are not equal

objects 2 and 3 are equal

The equals Method

 To test in the sense of equivalency (containing

the same information) each class must

override the equal() method.

37

The equals Method: Example 2
class Book {

private int price;

private String ISBN;

piblic Book(int price, String ISBN) {

this.price = price;

this.ISBN = ISBN;

}

public int getPrice() {

return price;

}

public getISBN() {

return ISBN;

}

public boolean equals(Object obj) {

if (obj == null)

return false;
else if (super.equals(obj))

return true;

else if (getClass() == obj.getClass()) {// equivalent objects

Book oa = (Book)obj;

return oa.getPrice() == price && oa.getISBN().equals(ISBN);

}

else return false;

} // end of the equals method

} // end of the Book class

38

The equals Method: Example 2

Book firstBook = new Book(1250, "0201914670");

Book secondBook = new Book(1250, "0201914670");

if (firstBook.equals(secondBook)) {

System.out.println("objects are equal");

} else {

System.out.println(objects are not equal);

}

 This program displays objects are equal even

though firstBook and secondBook reference two

distinct objects. They are considered equal

because the objects compared contain the

same ISBN number and the same price.

" "

39

The getClass Method

 getClass returns a Class

object which stores

information about the class.

 getClass is a final method.

 java.lang.Class defines these

methods:

 getName – returns the
(class) name

 getFields – returns all the
public fields

 getMethods – returns all the
public methods

 getPackage – returns the
class’ package

 getSuperclass – returns the
class’ superclass

 getConstructors – returns all
the public constructors

40

Example: getClass

class AA {

public int aak;

public AA(int k) {

aak = k;

}

}

final AA oa = new AA(5);
Class oc = oa.getClass();

String ocname = oc.getName(); // → “AA”

final Class sc = oa.getSuperclass();

String scname = sc.getName(); // → “Object”

41

The final Keyword

A final method cannot be overridden by a

subclass, for example:

 final void method() { … }

Final methods protect the behavior that is

critical to the consistent state of the object

An entire class can be declared final to

prevent the class from being subclassed:

 public final class String { … }

 public final class Class { … }

42

Example: final Method and Class

}

class BB extends AA {

public class AA {

private int aak;

final void method() {

…

}

}

class BB extends AA {

void method() { … }

}

public final class AA {

private int aak;

void method() {
…

}

}

43

Example: final Fields

// error

// error

void method() {

fi = 5;

}

// error

public class AA {

final int fi = 0; // initialized

AA() {

fi = 3;

}

void method() {

fi = 3;

}

}

public class AA {

final int fi; // not initialized

AA() {

fi = 3; // initialized

}

}

44

Example: final Variables

public class AA {

void method() {

final int k;

k = 3;

k = 5;// error

}

}

public class AA {

void method() {

final int k = 3;

k = 5; // error

}

}

45

Example: final Parameters

public class AA {

Object aao;

void mt(final Object arg) {

aao = arg;

arg = null; // error

}

public class AA {

Object aao;

void mt(Object arg) {

aao = arg;

arg = null;

}

}
}

46

Summary

 IS-A and HAS-A are different relations

between classes.

The Object class is the top of the class

hierarchy.

 Useful methods inherited from Object
include toString(), equals(), and getClass().

A final class cannot be extended.

A final method cannot be overridden.

A final field or variable, once initialized,

cannot change its value.

47

