
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 1

Online Deep Reinforcement Learning for
Computation Offloading in Blockchain-Empowered

Mobile Edge Computing
Xiaoyu Qiu, Luobin Liu, Wuhui Chen, Member, IEEE, Zicong Hong and Zibin Zheng, Senior Member, IEEE

Abstract—Offloading computation-intensive tasks (e.g.,
blockchain consensus processes and data processing tasks) to the
edge/cloud is a promising solution for blockchain-empowered
mobile edge computing. However, the traditional offloading
approaches (e.g., auction-based and game-theory approaches) fail
to adjust the policy according to the changing environment and
cannot achieve long-term performance. Moreover, the existing
deep reinforcement learning-based offloading approaches suffer
from the slow convergence caused by high-dimensional action
space. In this paper, we propose a new model-free deep
reinforcement learning-based online computation offloading
approach for blockchain-empowered mobile edge computing
in which both mining tasks and data processing tasks are
considered. First, we formulate the online offloading problem as
a Markov decision process by considering both the blockchain
mining tasks and data processing tasks. Then, to maximize long-
term offloading performance, we leverage deep reinforcement
learning to accommodate highly dynamic environments and
address the computational complexity. Furthermore, we
introduce an adaptive genetic algorithm into the exploration
of deep reinforcement learning to effectively avoid useless
exploration and speed up the convergence without reducing
performance. Lastly, our experimental results demonstrate
that our algorithm can converge quickly and outperform three
benchmark policies.

Index Terms—online computation offloading, blockchain, mo-
bile edge computing, deep reinforcement learning

I. INTRODUCTION

MOBILE edge computing (MEC) is a promising solution
that allows mobile devices to run the highly demanding

applications by providing computational resources. However,
building trust among multiple parties (e. g. different mobile
users and edge/cloud providers) in MEC is a challenge because
these parties usually have conflicting interests. Fortunately,
blockchain technologies taking advantage of decentralization,
anonymity, and trust have begun to exert a significant in-
fluence on MEC [1] [2] . Nonetheless, running blockchain
mining processes (e.g., performing Proof of Stake (PoS))
while supporting increasingly intelligent applications (process-
ing/analyzing tasks) can require vast computing and storage
resources [3]. Thus, the limited computing and storage capac-
ities of mobile devices are restricting real-world blockchain-
empowered mobile applications [4]. Therefore, it is vital to

X. Qiu, L. Liu, W. Chen, Z. Hong and Z. Zheng are with School of Data and
Computer Science, Sun Yat-sen University, China and National Engineering
Research Center of Digital Life, Sun Yat-sen University, Guangzhou 510006,
China. Email: qiuxy23@mail2.sysu.edu.cn, kelvin.liu1221@gmail.com,
{chenwuh@mail.sysu.edu.cn}, hongzc@mail2.sysu.edu.cn, zhz-
ibin@mail.sysu.edu.cn

develop a computation offloading solution that can extend
the capacities of mobile devices by offloading computation-
intensive tasks (e.g., blockchain consensus processes) to the
edge/cloud servers.

To develop the computation offloading solution for
blockchain-empowered MEC, social welfare maximization
auction-based approaches [5] (e.g., sealed-bid auction, com-
binatorial auction, forward, reverse, and double auction) and
game-theory approaches [6] (e.g., noncooperative game, stack-
elberg game [7] [8], and bargaining game) have been proposed,
in which the blockchain mining tasks can be offloaded to
the edge/cloud servers. These methods often require many
iterations for an algorithm to reach a satisfying optimum
[9]. In addition, the above approaches are mostly built in
consideration of one-shot optimization, they may not apply
well to maximize the long-term performance of computation
offloading. Further, these algorithms usually assume specific
models for the computation offloading solutions, which may
not accurately characterize the realistic environment.

Deep reinforcement learning (DRL) is emerging as an effec-
tive approach to obtain the optimal decision-making policy and
maximize the long-term rewards [10]. First, the combination
of reinforcement learning and deep learning [11] has been
extensively researched to create strategies for computation of-
floading. Kawamoto et al. [12] utilized Q-learning to construct
an unmanned aircrafts communication management system.
However, the performance of the algorithm is greatly affected
by the convergence and accuracy of the deep Q-network
(DQN). Second, improving the performance of a DQN for
computation offloading has attracted much attention recently.
Zhang et al. [13] proposed a modified DQN by using the
stacked autoencoder, which achieved an outstanding resource
management in cloud servers. However, the dimension of
action space would expand exponentially when considering
multi-hop multi-user MEC systems. Third, some recent studies
have attempted to address the high complexity problem. Mnih
et al. [10] combined a value-based method with a policy-
based method and proposed asynchronous methods for deep
reinforcement learning. Nonetheless, to our knowledge, the
slow convergence caused by high-dimensional action space
remains an urgent and challenging problem.

In this paper, we study the computation offloading problem
for both mining tasks and data processing tasks in multi-hop
multi-user blockchain-empowered MEC. To solve the prob-
lem, we propose a new model-free DRL-based online compu-
tation offloading algorithm, namely deep reinforcement learn-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 2

ing combined with genetic algorithm (DRGO). The DRGO
algorithm aims to maximize long-term rewards and accom-
modate highly dynamic environments via deep reinforcement
learning. In particular, to speed up the convergence caused by
high-dimensional action space, the DRGO algorithm adopts
adaptive genetic algorithm (AGA) [14] during exploration in
deep reinforcement learning, which effectively avoids useless
exploration to a great extent and reduces the computational
complexity of deep reinforcement learning. To our knowledge,
this is the first time that AGA has been introduced to solve
the large action space problem of DRL.

Our contributions can be mainly summarized as follows.
1) We are the first to study the online computation offload-

ing need for both the blockchain mining tasks and data
processing tasks in multi-hop multi-user blockchain-
empowered MEC. We then formulate the online offload-
ing problem as a Markov decision process (MDP) to
consider the dynamic environments.

2) To adopt the dynamic environments and achieve long-
term offloading performance, we leverage the deep re-
inforcement learning to obtain the optimal offloading
policy based on the past offloading experience. In this
context, a considerable number of iterations for reaching
a satisfying optimum can be avoided.

3) To speed up the convergence, we introduce adaptive
genetic algorithm into the exploration of deep reinforce-
ment learning. In this way, we can make the most of the
evaluating role of critic network in exploration, avoiding
useless exploration to a great extent without reducing the
performance.

The remainder of the paper is structured as follows. In
Section II, we review the related work. In Section III, we
present a system model and Section IV describes the problem
formulation. In Section V, we introduce the proposed DRL-
based method for computation offloading, and Section VI
presents the numerical simulations. Section VII concludes.

II. RELATED WORKS

Many studies have examined the computation offloading
need for edge computing or cloud computing [15]. Liu et
al. [16] proposed a multiplier-based computation offloading
algorithm, where the blockchain mining tasks can be offloaded
to nearby edge computing nodes. Chen et al. [17] transformed
the resources allocation problem of computation offloading
into a mixed-integer linear programming problem to improve
quality-of-service and reduce execution times. Chatzopoulos
et al. [18] proposed a hidden market design-based offloading
approach that allows users to specify the amount of resources
they are willing to share. However, all these algorithms are
constrained by the trade-off between efficiency and optimal-
ity. Moreover, they consider immediate rewards and assume
specific models that may be incompatible.

Recently, artificial intelligence approaches such as deep
learning [19] [20] and reinforcement learning [21] have
emerged as effective measures to solve computation offloading
problems. A resource allocation algorithm based on deep Q-
learning is proposed in [22] to optimize the performance of

computation offloading in MEC. Liu et al. [23] proposed a
deep learning-based resource allocation algorithm to enable
high energy efficiency and low power consumption. Qi et al.
[24] explored DRL to obtain the optimal offloading decision
for the Internet of Vehicles. However, to apply DRL to compu-
tation offloading, the major challenge lies in the convergence
and accuracy of the deep neural network (DNN).

To accelerate the learning process, transfer learning inte-
grating with DRL is proposed in [25] to reduce the random
exploration at the initial learning process. Min et al. [26] com-
pressed the state space by utilizing a deep convolutional neural
network (CNN) and achieved a near-optimal offloading policy.
In contrast, to avoid overestimation and reduce bias, Wang et
al. [9] devised two double DQN-based algorithms to address
the cost-minimization problem of D2D offloading. However,
when considering the multi-hop multi-user environment, the
exponential explosions of the state space and action space are
inevitable and prevent the above approaches from working.

A few recent studies have attempted to solve the exponential
explosion of the action space. Wei et al. [27] proposed a policy
gradient-based actor-critic algorithm for the computation of-
floading and content caching problems with continuous-valued
state and action variables. Zhu et al. [28] proposed a hybrid
actor-critic method, which asynchronously trained the network
parameters and decreased the long-term offloading cost. In
addition, although methods such as asynchronous advantage
actor-critic (A3C) [29] or deep deterministic policy gradient
(DDPG) [30] can solve the problem of exponential explosion,
they also lead to slow convergence. Because of the high-
dimensional action space, traditional exploration methods such
as the ε-greedy policy are obviously inefficient and inadequate.
Therefore, we develop a DRL-based online offloading algo-
rithm to address the challenge. In particular, to speed up the
convergence, we adopt AGA during exploration, which can
also avoid useless exploration to a great extent and reduce the
computational complexity.

III. SYSTEM MODEL

In this work, we study the computation offloading need
for blockchain-empowered MEC, where nearby IoT devices
are grouped as communities such as smart home and smart
industrial. Because these IoT devices belong to the same
communities, it is reasonable to model the system as an
optimization problem about long-term total reward. Fig. 1
shows the architecture of our proposed system, which consists
of the following components.

1) Blockchain network: To provide security and privacy
for IoT devices, the blockchain technology is introduced to
MEC, which is known for its security and immutability. A
blockchain works as a decentralized database and stores data
as blocks after validation. Some nodes, known as miners,
collect transactions from the whole blockchain network and
attempt to perform consensus processes such as Proof-of-
Work (PoW) or PoS. In this way, the first miner who reaches
consensus is rewarded and a new block is connected to
the whole blockchain after validation. Therefore, the data
contained in the block cannot be tampered with or forged.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 3

. . .

Servers

Smart home

devices

: blockchain

: blockchain peers link

: D2D communication

: computation offloading

smart home

management hub & proxy miner

. . .

VMs

Blockchain network

Fig. 1. Multi-hop blockchain-empowered mobile edge computing

2) Computation offloading for data processing tasks: In the
system model, end devices are connected through a multi-hop
ad-hoc network that supports data transmission and compu-
tation offloading. Assuming there are N end devices (EDs),
we let N = {1, 2, 3, ..., N} denote the set of the EDs. Each
ED i(i ∈ N) is uniquely identified using an account in the
blockchain network. We denote bi (tokens) as the balance of
the account associated with ED i, that can be used to purchase
computational resources for data processing tasks, such as
3-D sensing and augmented reality. Because of the limited
computational power of EDs, executing the data processing
tasks locally could cause a long delay. Therefore, the tasks can
be scheduled to be executed locally or offloaded to edge/cloud
servers. In this work, we introduce the concept of task queue,
which is a data structure that contains a list of tasks to be
performed in turn. If the computational resources are occupied
at the current time epoch, tasks can be queued at the task queue
until the resources are available. The brief information of the
generated tasks is transmitted to a management hub, which is
responsible for making offloading decisions for EDs to achieve
higher performance.

3) Computation offloading for blockchain mining tasks:
As part of the blockchain network, EDs can participate in the
mining process to obtain rewards. However, the mining process
is not performed locally because of resource constraints. In
general, EDs can entrust proxy miners to purchase compu-
tational resources from edge/cloud servers and perform the
consensus processes in the edge/cloud servers [31].

4) Resource purchase scheme in edge/cloud servers: We
assume that a virtual machine (VM) is the smallest unit to
perform the tasks [32] and can only execute one task at the
same time. In the servers, VMs are divided into different
levels to meet the requirements of various types of offloading
requests [32]. In this paper, we assume that VMs for data
processing tasks in the servers are divided into k levels,
which are denoted by Lc = {1, 2, ..., k}. Similarly, VMs for
mining tasks are divided into j levels that are denoted by
Lm = {1, 2, ..., j}. In general, the edge servers provide the
resources for computation. In the case that they cannot serve
the EDs, they offload the tasks to the cloud servers and charge
the communication and computation cost to the EDs.

5) Trade-off between two tasks: As the offloading of both
tasks needs to purchase resources from servers, it is important
to consider the trade-off between both tasks. For example, if
an ED spends most of its tokens in blockchain mining at the
current time epoch, it may fail to execute the incoming data
processing tasks because the mining cost is paid immediately,
while the reward is obtained until reaching consensus. On
the other hand, the reward obtained after reaching consensus
can be used to improve the performance of data processing
tasks. Therefore, it is critical to jointly consider both tasks.
We integrate the management hub for data processing tasks
with the proxy miner for mining tasks as a joint management
module (JM).

6) Multi-hop ad-hoc network: In the ad-hoc network, some
EDs are directly connected to the JM, but some may not
connect because of distance or device limitations. However,
some nodes can communicate with their neighboring peers and
help their neighboring peers transfer data to the JM. Therefore,
similar to [33], we divide EDs into different hierarchical levels
based on their network topology. We assume EDs that directly
connect to JM are in level 1. In the same manner, EDs that
can only send data to the JM via neighboring EDs in level 1
are in level 2. Subsequent levels are formatted similarly. To
avoid data transmission congestion and adapt to the dynamic
environment, each ED can dynamically select nearby devices
as its next hop to transmit data.

IV. PROBLEM FORMULATION

A. State and Action

At each decision epoch t, the state of the system can be
characterized by St = (Sm,M c,G, P c, F c, Pm, Fm, Qs, H).
The meaning of each variable is as follows.

• Sm = {Si = (qi, fi, ui, bi)|i ∈ {1, 2, .., N}} denotes
the collected states of all EDs, including the tasks queue
length qi, the CPU frequency of local device fi, the
unique network ID ui and the balance bi of the associated
account.

• M c = {M c
i = (li, di, vi, s

u
i , s

d
i)|i ∈ {1, 2, .., N}}

denotes the brief information of all data processing tasks
of EDs, including CPU cycles li, the deadline of the task
di, completion reward vi, uploading data size sui , and
downloading data size sdi .

• G is the current network state, including the topology
and data transmission rates between each ED. If ED i
cannot communicate with ED j, the data transmission
rate between ED i and ED j is set as 0.

• P c = {pc1, pc2, ..., pck} and F c = {f c1 , fc2 , ..., f ck} denote
the prices and CPU frequencies of different VM levels
for data processing tasks, respectively. Similarly, Pm =
{pm1 , pm2 , ..., pmj } and Fm = {fm1 , fm2 , ..., fmj } are for
mining VMs.

• Qs denotes the length of the task queue in the servers.
• Lastly, H is the estimation of the hash power (also

called hash rate) of the blockchain network, representing
the computational power that the blockchain network is
consuming. H determines how many hash operations can

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 4

TABLE I
NOTATION DEFINITIONS

Symbol Definition

N Set of EDs
N Number of EDs
k, j Number of VM levels for data processing and mining tasks
Lc, Lm Set of VMs levels for data processing and mining tasks
P c, Pm Set of VMs’ prices for data processing and mining tasks
F c, Fm Set of VMs’ computational capacity for data processing and

mining tasks
St State of system at decision epoch t
Sm Set of collected states of EDs
Mc Set of brief informations of data processing tasks
G Network state
Qs Task queue length in servers
H Estimation of hash power of blockchain network
At Set of offloading decision for EDs
qi Queue length of ED i
fi Computation ability of ED i
ui Network ID of ED i
bi Balance of ED i
Mc
i State of data processing task of ED i

li Required CPU cycles for task Mc
i

di Deadline for task Mc
i

ai Completion reward for task Mc
i

sui , s
d
i Uploading and downloading data size for task Mc

i
σ Unit energy consumption of CPU cycles (joules per cycle)
pe Unit price of energy (tokens per joule)
K<i,j> Maximal achievable data rate between ED i and ED j
Ni Number of EDs that transmit data via ED i
Wi Transmit power of ED i
γi Relative hash power of ED i
R Reward of the first miner reaching consensus
Θ Task failure penalty
pc, pm Crossover probability and mutation probability
Q(S,A) State-action value function
Kmax Max number of generation in AGA
θµ, θQ Parameters of actor network and critic network
ϕ Preset value to evaluate critic network

be performed per second and can be estimated based on
the compact status reports issued by the miners [34].

Based on the system state St at decision epoch t, JM
makes a task offloading action At = {ai|i ∈ {1, 2, .., N}}
and sends ai to the corresponding ED i. Each action ai can
be represented as (ci,mi, ni). ci ∈ {0, 1, 2, ..., k} denotes
the offloading decision of data processing tasks. If ci = 0,
ED i executes the tasks locally. Otherwise, ED i purchases
a corresponding level of VM and offloads tasks to servers.
Similarly, mi ∈ {0, 1, 2, ..., j} denotes the offloading decision
of data mining tasks. If mi = 0, ED i does not decide to mine.
In addition, to offload the tasks, the required data and program
code need to be transmitted to the servers. Considering the
multi-hop scenario that we discussed, ni denotes the network
ID of the next hop in the upper level. In this work, the action
is coded in binary. For example, if ni = 3, we convert it to
‘11’.

B. Cost of Data Processing Task

1) Local Execution Model: If a data processing task is
executed locally at ED, that is, ci = 0, ED i need to consume
a large amount of energy to compute its tasks. In our proposed
blockchain-empowered system, we convert the cost of energy
consumption into tokens to unify units. Let σ denote the unit

energy consumption of CPU cycles (joules per cycle), li denote
the required CPU cycles and pe denote the unit price of energy
(tokens per joule). Thus, the local execution cost of ED is as
follows.

C local
i = σlip

e · 1{ci=0}, (1)

where 1{Ω} is the indicator function, that is, 1{Ω} equals to 1
if the condition Ω is satisfied. Otherwise, 1{Ω} equals to 0.

2) Offloading Computation Model: Considering the limited
computational power of EDs, they can offload their tasks to
the servers to achieve better performance. If ED i decides to
offload its tasks to servers, the corresponding price for VM of
level ci must be paid, which is as follows.

XC
i = lip

c
ci · 1{ci∈[1,k]}, (2)

where pcci is the price of the purchased VM (token per Gcycle).
In addition, to offload tasks, EDs need to upload the required

data and program code to the servers and download the return
data back with the assistance of JM or their neighboring peers.
We denote the maximal achievable transmission rate between
ED i and ED j as K<i,j>. It is worth noting that ED i may
receive transmission requests from other EDs and we assume
the bandwidth allocated to each ED is equal. Therefore, the
expected rate of transmitting data from ED i to ED j can be
written as follows:

ri =
K<i,j>

Ni
, (3)

where Ni is the number of EDs that transmit data via ED i.
To offload tasks to servers, EDs should pay for the energy

consumption during data transmission. We denote Ui as the
set of EDs that transmit data via ED i (including itself), thus
the cost of data transmission in our offloading computation
model is as follows:

C trans
i =

∑
j∈Ui(s

u
j + sdj)

ri
· Wip

e · 1{ci∈[1,k]}, (4)

where Wi is the transmit power of ED i. suj and sdj are the
uploading and downloading data sizes of ED j. And pe denotes
the unit price of energy (token per joule).

To sum up, the total cost for offloading task is as follows:

Coffload
i =

(
XC
i +

∑
j∈Ui(s

u
j + sdj)

ri
· Wip

e

)
· 1{ci∈[1,k]}.

(5)

C. Reward of Mining Task

1) Reward of Blockchain Mining: If mi 6= 0, that is, ED
i decides to perform the mining task in servers, it needs to
compete for accounting rights with other miners by calculating
the numerical solutions of a random hash. In a blockchain
network, the hash power determines how many hash operations
can be performed per second. According to [35], the relative
hash power of ED i to the blockchain network is as follows:

δi =
fmmi

H
, (6)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 5

where fmmi
is the hash power of the VMs that ED i purchase,

and H is the estimation of the hash power of the blockchain
network, which is based on the compact status reports issued
by miners [34]. In general, as δi increases, the possibility
to reach a consensus increases, and the expected reward
increases.

In the blockchain network, if a well-formed block is no
longer part of the longest and well-formed blockchain, called
an orphan block, the miner who mined that block does not
actually get the reward (or the transaction fees). According
to [4], the possibility of a block becoming an orphan block
is approximately 1− e−λv(sm), where −λ denotes a constant
rate, sm is the size of the block to be mined and v(sm) denotes
a function of block size. We set R as the rewards of the first
miner that reaches consensus. Therefore, the expected rewards
of ED i are:

Ri = e−λv(sm)δi · R · 1{mi∈[1,j]}. (7)

2) Cost of Blockchain Mining: Based on our proposed
blockchain-empowered MEC, a payment is required for the
allocated computational resources when ED i decides to
perform the mining tasks in the servers, which is as follows:

XM
i = pmmi

· 1{mi∈[1,j]}. (8)

Overall, the total reward of mining tasks can be represented
as follows:

Rmine
i =

(
e−λv(sm)δi · R −XM

i

)
· 1{mi∈[1,j]}. (9)

D. Task Failure Cost and Completion Reward

1) Local Execution Failure: In this part, we consider the
failure cost of the data processing tasks. In our model, the
computation resources of local devices are not infinite. We
assume tasks performed locally are queued at the task queue
based on the first-in-first-out principle. If the task queue is
full, the generated task will be rejected and EDs will receive
a penalty Θ. We denote the task queue of ED i at the current
time epoch as qi and the maximum task queue length as
qmax
i . In addition, we assume that the queuing delay is the

estimated execution time of all the prior tasks in the queue and
is denoted as dqueue

i . Thus, the task delay for local execution is
determined by the queuing delay and execution delay, which
can be represented as:

dlocal
i =

(
dqueue
i +

li
fi

)
· 1{ci=0}, (10)

where li is required CPU cycles and fi is the CPU frequency
of ED i. If dlocal

i > di, that is, the task delay is larger than the
deadline, the execution of the task fails and ED i should pay
a penalty. Therefore, the failure penalty for local execution is
defined as:

Θlocal
i = Θ{{qi=qmax

i }∨{dlocal
i >di}}, (11)

where ∨ means “logic OR”.

2) Offload Execution Failure: Similarly, the task delay for
offloading is determined by the transmission delay, queue
delay and execution delay. First, we denote Li as the complete
routing path from ED i to servers, which contains the network
IDs of all passing EDs and JM. Therefore, the transmission
delay of ED i is as follows:

dtrans
i =

∑
j∈Li

(sui + sdi) ·Nj
rj

, (12)

where sui and sdi are the uploading data size and downloading
data size respectively. Nj is the number of EDs that transmit
data via ED j (j 6= 0) or JM (j = 0) and rj is the data
transmission rate of ED j (j 6= 0) or JM (j = 0).

Second, we denote the task queue at the servers as qs, the
maximum task queue length as qmax

s , and the estimated queuing
time as dqueue

s . Therefore, the sum of the queue delay and the
execution delay of the offloaded tasks is as follows:

dexecute
i =

li
pcci

+ dqueue
s , (13)

where li is the required CPU cycles and pcci is the CPU
frequency of the purchased VM.

By using Equation (12) and (13), the task delay can be
represented as:

doffload
i =

∑
j∈Li

(sui + sdi) ·Nj
rj

+
li
pcci

+ dqueue
s . (14)

In addition, similar to local execution, if the task delay
exceeds the deadline di, ED i receives a penalty that can be
represented as:

Θoffload
i = Θ{{doffload

i >di}∨{qs=qmax
s }}. (15)

3) Completion Reward: If a data processing task is success-
fully executed, ED i receives a reward vi. Thus, the completion
reward of ED i is as follows:

Vi = vi · 1{Θlocal
i =0}∧{Θoffload

i =0}, (16)

where ∧ means “logic AND”.

E. Cost of System

To sum up, using Equations (1), (5), (9), (11), (15) and (16),
the cost of ED i is:

Ci = C local
i + Coffload

i −Rmine
i + Θlocal

i + Θoffload
i − Vi. (17)

From the perspective of system, the instantaneous system
cost can be represented as:

Ctotal =
∑
i∈N

Ci, (18)

where N = {1, 2, 3, ..., N} is the set of EDs.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 6

F. MDP-Based Optimization Problem

In our performance optimization problem, it is important to
note that costs such as energy consumption and purchasing
VMs should be paid immediately. However, the task com-
pletion rewards are not given until the tasks are successfully
executed. Similarly, the mining rewards are not given until
reaching consensuses. If an ED spends most of its tokens
on blockchain mining or the current data processing tasks,
it may obtain many rewards after achieving consensuses or
finishing the tasks. However, it may not have enough tokens
for the incoming data processing tasks and thus suffers a
penalty. Therefore, it is important to consider the computation
offloading problem in the long run.

In this paper, we formulate the computation offloading
problem as a discrete time MDP, which is widely used
to address sequential stochastic decision-making problems.
In this context, the considerations we discussed above are
automatically considered in an MDP model, which can be
defined as a tuple < S,A, P,R(·),T >:
• S: the state space
• A: the action space
• P : the transition probability from taking action At under

state St to next state St+1

• R(·): the immediate reward function that takes the state–
action pair as input

• T: a sequence of time
In our scenarios, the immediate reward function R(·) of the

MDP equals to − Ctotal(·), which is the system cost function
in Equation (18). Therefore, the objective of this research is
to find an optimal policy π∗ that makes decisions to maximize
the long-term reward, which can be defined as:

maxEπ,S

[
T∑
t=1

R(St+1|St, π(At))

]
. (19)

V. ALGORITHM DESIGN

Deep reinforcement learning (DRL) is emerging as an ef-
fective approach to obtain the optimal decision-making policy
and maximize the long-term rewards [10]. In traditional deep
reinforcement learning, a DNN is used to approximate the
mapping from the current system state St to the expected re-
wards or selected probabilities of all possible actions. Because
it requires exhaustive search through all actions, it is unsuitable
for problems with high-dimensional action spaces, which leads
to slow convergence [10]. To support problems with high-
dimensional action spaces, approaches such as A3C [29] or
DDPG [30] are proposed, which combine policy gradient
with value function. These algorithms use two kind of neural
networks: actor network and critic network. The actor network
makes action based on the state, while the critic network
evaluates the action taken. However, they often require specific
design for the exploration mechanism to explore the complex
action space. Otherwise, it inevitably leads to a largely unex-
plored action space.

To address the challenge, we propose an online computation
offloading framework combined with DRL and AGA. The
AGA is introduced in the exploration phase to avoid largely

unexplored action space. The next section focuses on the
details of our proposed algorithm and its update strategy.

A. Overview of the DRGO Algorithm

Fig. 2 shows that the DRGO algorithm consists of two
important components: an actor network and a critic network.
In the actor network, rather than outputting the expected
rewards or possibilities of all possible actions, it works as
a policy π that takes system states St as inputs and outputs
an action At at decision epoch t. For any given system state
St, the offloading policy π can be defined as a mapping:

π : St 7→ A. (20)

And for any action A, the critic network is used to evaluate
the expected long-term reward, which can be defined as a
mapping.

Q : (St, A) 7→ R. (21)

In the system, JM receives requests from EDs periodically
and combines them to system state St. The DRGO algo-
rithm is triggered regularly or when JM receives a certain
amount of requests from EDs. In this context, the decision
epoch is changeable in practice, which is more realistic for
actual situations. At decision epoch t, the actor network
takes system state St as input and produces an action used
in exploration or exploitation. We denote the action after
exploration or exploitation as At. Next, JM transmits At to
EDs to obtain the next state St+1 and reward Rt. Then, we
store (St, At, Rt, St+1) in replay memory. At each training
epoch, we select samples from the replay memory to update
the parameters in the actor network and the critic network
toward maximizing the long-term reward.

B. Using AGA to Generate the Candidate Solution Set

The actor network works as a policy π that takes system
state St as the inputs and produces a action A (Algorithm 1:
line 6). To maximize the expected long-term reward of the
system, we need to train the actor network toward outputting
the optimal action A∗. In traditional reinforcement learning
method such as DDPG, an entropy bonus is added to ensure
sufficient exploration. However, to fully explore all actions,
it consumes a great amount of time and leads to low data
utilization.

Therefore, in this work, two methods are used to guarantee
both efficiency and sufficiency of the exploration process.
As mentioned, the critic network can be used to evaluate
the expected long-term reward for each state-action pair on
condition that it is well-trained. And the loss value is used to
measure the inconsistency between the predicted value and the
actual value. Therefore, if the loss value of the critic network
is larger than the preset value ϕ, that is, the critic network
cannot evaluate candidate actions very well, we use the random
mechanism to generate a new action after obtaining the output
of the actor network for sufficiency. Otherwise, we use the
AGA for efficiency (Algorithm 1: line 7). The preset value ϕ

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 7

task state

server state
…

network state

state 𝑆t
actor network

online policy network: 𝜃𝜇

target policy network: 𝜃𝜇′

soft update

A= 𝜃 𝑆𝑡

state 𝑆t

𝑆t
𝐴t
𝑅𝑡
𝑆t+1

mini-batch

train

train

action 𝐴t
blockchain-empowered mobile edge computing

observation

Prioritized

Replay Memory
N * (𝑆𝑡, 𝐴𝑡, 𝑅𝑡 , 𝑆𝑡+1)

critic network

online Q network: 𝜃Q

target Q network: 𝜃Q
′

soft update

exploration

exploitation

L 𝜃𝑄
′
< 𝜑

AGA

L θQ
′
> φ

random

Rt

management hub

&

proxy miner

Fig. 2. DRL combined with genetic algorithm for computation offloading in blockchain-empowered MEC.

can be set as the loss value when the critic network converges,
which can be obtained by pretraining the critic network.

The usage of AGA in the exploration process is illustrated
in Fig 3. First, it combines the output of the actor network
A with m− 1 randomly generated solutions, where m is the
size of the population. Then it uses genetic operators such as
crossover and mutation to generate the candidate solution set
A = {A1

t , A
2
t , ..., A

m
t } as the next and subsequent generations.

For each generation of AGA, we use the critic network to
measure the performance of each action and use selection
operators to select candidates that contribute to the population
of the next generation. AGA terminates when the number of
generations has reached a preset maximum number Kmax.

𝐴𝑡
𝑚

generate candidate set

critic

network

⋮

𝐴𝑡
𝑛

𝐴𝑡
1

evaluate each action

(𝐴𝑡
1, 𝑅t

1)

⋮

terminate?
Y

𝐴t
1

⋮

N

(𝐴𝑡
𝑚, 𝑅𝑡

𝑚)

selection

Y: output action with max R

N: continue

Fig. 3. High-efficiency DRL exploration using AGA.

Here, we introduce two important terms, the probability of
crossover (pc), which indicates the converge characteristic,
and the probability of mutation (pm), which indicates the
characteristic of breaking through the limitation of the current
search space. If the population tends to stay at the local
optimum, we increase the values of pc and pm. Otherwise,
we decrease the values of pc and pm. One way to measure
the convergence ability is R −Rmin, where R is the average
reward and Rmin is the minimum reward. It is obvious that
R − Rmin is likely to be lower when a population converges
to a local optimum (or global optimal) solution. In this way,
pc and pm can be expressed as:

pc =
k1

R−Rmin

, (22)

pm =
k2

R−Rmin

. (23)

Increasing pc and pm may cause disruptions of the near-
optimal solutions when a population reaches a global optimal
solution. To solve this problem, pc should depend on the
reward of its parent R′, and pm should depend on the reward
of itself R. As Rmin −R′ increases, pc should also increase.
Similarly, as R − Rmin increases, pm should also increase.
In addition, we preset k3 and k4 as the recommended values
when pc and pm increase beyond 1. Therefore, the expressions
for pc and pm are

pc =


k1(Rmin −R′)
R−Rmin

R′ ≤ Rmin

k3 R′ > Rmin

, (24)

pm =


k2(R−Rmin)

R−Rmin

R ≥ Rmin

k4 R < Rmin

, (25)

where k1, k2, k3, and k4 < 1.0.

C. Selecting from the Candidate Set in AGA

In the next step, we use the critic network to select from
the candidate set by estimating Q(St, A) for each state–action
pair in the candidate solution set A. Considering a stationary
task offloading policy π, the system follows the state transition
probability, which can be expressed as:

Pr{St+1|St, π(St)} =

N∏
i=0

Pr{Sit+1|Sit , π(Sit)}, (26)

where Sit is the state of ED i in decision epoch t.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 8

The task offloading problem can be regarded as an MDP.
Considering the offloading policy π, V (S, π) denotes the
expected reward for following policy π in state S, and Q(S,A)
is the expected reward for selecting action A in state S and
then following policy π. V (S, π) and Q(S,A) are considered
as the state value and state–action value functions, respectively.
Taking expectation with respect to system reward R at each
epoch over a time sequence {t|(t ∈ N+)}, the expected long-
term cumulative reward can be characterized as:

V(S, π) = Eπ

[
(1− γ) ·

∞∑
t=1

(γ)t−1 ·R(St, π(St))

]
, (27)

where St (t ∈ N+) is the system state at epoch t, (γ)t−1 is
the discount factor, and R(St, π(St)) denotes the total system
reward for taking action π(St) under state St. Decomposed
into the Bellman equation, the maximum state value achievable
by policy π for state S is:

V∗(S, π) = max
A

∑
S′

Pr{S′|S,A} · (R(S,A)+

γ ·V∗(S′, π)),

(28)

where S′ is the next state of S after choosing action A. In
contrast, similar to Equation (28), the optimal state–action
value function can be defined as:

Q∗(S,A) =
∑
S′

Pr{S′|S,A} · (R(S,A)+

γ ·max
A′

Q∗(S′, A′)),
(29)

where S′ is the next state of S after choosing action A, and A′

is the offloading action performed under state S′. Equations
(28) and (29) are the Bellman optimality equations. In Q-
learning, the policy π is updated using value iteration in a
recursive way based on the observation of system state S.

The prerequisite for using the critic network in the selection
of AGA is the convergence of the Q-function.

Theorem 1. The critic network of the DRGO algorithm
converges to the optimal Q-function.

Proof. Because the state space S and action space A are
finite, the state transition probabilities Pr{St+1|St, π(St)}
in Equation (26) are stationary, and all state–action pairs
{(St, At)|t ∈ N+} can be visited infinitely often. Given
(St, At, St+1, Rt), the update rule of the critic network in the
DRGO algorithm therefore is:

Q(St, At) = Q(St, At)+

α(St, At)[Rt + γmax
b∈A

Q(St+1, b)−Q(St, At)].

(30)

We subtract Q∗(St, At) from both sides, thus obtaining

∆(St, At) = Q(St, At)−Q∗(St, At), (31)

which yields

∆(St, At) = (1− α)∆(St, At) + α(St, At)F (St, At), (32)

F (St, At) = [Rt + γmax
b∈A

Q(St+1, b)−Q∗(St, At)]. (33)

Because
∞∑
t=1

α is infinite and
∞∑
t=1

α2 is finite, according to

[36], ∆(St, At) converges to zero w.p.1 if:
1) ‖E[F (St, At)|F]‖∞≤ γ‖∆(St, At)‖∞,with γ < 1.
2) var[F (St, At)|F] ≤ C(1 + ‖∆(St, At)‖2∞),with C > 0

First, the following equation is derived.

‖E[F (St, At)|F]‖∞ = Pr(St+1|St, At)F (St, At)

≤ γ‖Q(St, At)−Q∗(St, At)‖∞
= ‖∆(St, At)‖∞.

(34)

Then, the following equation is obtained.

var[F (St, At)|F] = var[Rt + γmax
b∈A

Q(St+1, b)|F]. (35)

Because Rt is bounded, the following is true.

var[F (St, At)|F] ≤ C(1 + ‖∆(St, At)‖2∞). (36)

Here, C is a constant. Hence, ∆(St, At) converges to zero
w.p.1, which means the critic network of the DRGO algorithm
converges to the optimal Q-function Q∗(S,A) .

Therefore, we can use the critic network to estimate the
performance of each action in the candidate solution set. We
denote the optimal action A∗ as:

A∗ = arg max
Ai∈A

Q∗(St, Ai). (37)

D. Self-Adjusting K in AGA

In AGA, with a larger K, we can reach a better offloading
decision and achieve higher performance. However, a larger
K also leads to computational complexity and large time
consumption. Therefore, to balance the performance and com-
plexity, we propose an algorithm with self-adjusting K.

The rule of adjusting K is simple. After obtaining the
optimal action A∗ from the candidate solution set, we compare
it with the original output of the actor network A. If A is equal
to A∗, then subtract one from K; otherwise, we increase the
value of K based on the difference between A and A∗. The
difference can be measured by the L2-norm of A−A∗, which
is denoted as ‖A−A∗‖2.

In addition, to avoid K becoming too large, making AGA
consume too much time, we add a constraint K ≤ Kmax to
limit the maximum value of K. Given a strictly monotonically
increasing functions φ, the updating rule of K is:

K =

{
max(0,K − 1) A∗ = A

min (K + φ(‖A−A∗‖2),Kmax) A∗ 6= A.
(38)

E. Updating Policy with Prioritized Experience Replay

The DRGO algorithm regularly updates the parameters in its
deep neural networks based on the experience. It maintains a
replay memory with the finite size of x to store historical expe-
riences, which can be represented asM = {M1,M2, ...,Mx},
where Mi = (St, At, Rt, St+1) (Algorithm 1: line 9). Then,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 9

Algorithm 1 Online Deep Reinforcement Learning Frame-
work with AGA in the Task Offloading System

1: Initialize parameters of the online actor network and critic
network with weights θµ and θQ randomly.

2: Initialize parameters of the target actor network and critic
network with weights θµ

′ ← θµ and θQ
′ ← θQ.

3: Initialize the prioritized replay memory M with the size
of x.

4: Set the max number of generations Kmax, the training
interval δ, the step count t, and ϕ used to measure the
loss value of the critic network.

5: Repeat
6: At the beginning of decision epoch t, JM takes system

state St as an input to the actor network and obtains action
At.

7: With probability 1 − ε output action At. Otherwise, if
L(θQ

′
) ≤ ϕ, use AGA to replace At with the optimal

action A∗ of a generated solution set A; or replace At
with a random action if L(θQ

′
) > ϕ.

8: Execute action At, observe reward Rt, and observe new
state St+1

9: Store transition (St, At, Rt, St+1) in replay memory.
10: if t mod δ = 0 then
11: Select samples from replay memory and update θµ

and θQ using the Adam algorithm by minimizing the loss
function in Equation (40) and (41).

12: end if
13: Regularly update the target networks:
14:

θQ
′
← τθQ + (1− τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′
.

15: Until A predefined stopping condition is satisfied.

in the training phase, we sample a mini-batch of transitions
from the replay memory to update parameters in the actor
network and the critic network toward maximizing the long-
term reward.

Traditional deep reinforcement learning randomly selects a
batch of training samples from the replay memory, making it
difficult to learn valuable experience. Therefore, we organize
the replay memory with the SumTree structure. It arranges
samples in the replay memory according to their priorities,
which is called prioritized experience replay [37]. As the
loss value of a sample increases, it becomes more likely to
be used to update the network. By selecting samples from
replay memory with higher priority, our model can learn more
efficiently, and the probability of the selecting sample i is:

P (i) =
pβi∑
k p

β
k

, (39)

where pi > 0 is the priority of sample i, and the exponent β
denotes how much prioritization is used.

For the actor network, we denote samples selected from
prioritized replay memory asMT = {(St, At)|t ∈ T }, where
T represents the set of time indices. Using Adam optimizer,

the parameters θµ of the actor network are updated in the
direction of minimizing the cost function L(θµ) (Algorithm
1: lines 13-14). As mentioned, we represent actions in binary
form. Therefore, the loss function L(θµ) is defined by:

L(θµ) =

EMT

[
At

T logµ(St) + (1−At)T log(1− µ(St))
]
,

(40)

where µ(St) denotes the output of the current actor network
with input St. The loss function L(θµ) is the averaged cross-
entropy loss of the selected memory set.

For the critic network, we denote samples selected from
prioritized replay memory asM′T = {(St, At, Rt, S′t)|t ∈ T }.
Similarly, we denote the loss function L(θQ) as follows.

L(θQ) = EM′
T

(
Rt + γmax

A′
t

Q(S′t, A
′
t)−Q(St, At)

)2

,

(41)
where γ is the discount value.

VI. SIMULATION

In this section, we evaluate the performance of our proposed
algorithm through numerical simulations.

A. Simulation Setup

We consider a scenario where EDs are randomly distributed
within an area of 500 m × 500 m. In addition, EDs are
connected through a multi-hop ad-hoc network based on the
WirelessHART protocol over IEEE 802.15.4 [38]. EDs can
communicate with each other within the range of 100 m,
so they are divided into different levels according to their
distances from the JM. The channel bandwidths between EDs
are 2.4 GHz. The transmit powers of EDs are 0.5 W [39],
while the additive white Gaussian noise power is –120 dBm.
The path loss exponent is -2. The maximum achievable rate
(in bps) of ri for downloading/uploading is set as 250 kbps
[40]. For the interference between EDs, we use the sum of
the transmission powers from all the interfering EDs as the
interference strength [41]. In addition, we study the surveil-
lance and security systems for a smart home in this simulation.
Consequently, according to [38], the task’s uploading data
sizes follow the uniform distribution on [100, 1000] KB, while
the transmission of the downloading data is ignored because
the amount of returning data is usually small.

For the task execution, the required CPU cycles of data
processing tasks li follow the uniform distribution on [20, 40]
Gcycles [3]. And the CPU frequencies of ED fi range from
10 GHz to 20 GHz. For simplicity, there are five different
VM level for data processing tasks in the servers, whose CPU
frequencies are 50 GHz, 100 GHz, 150 GHz, 200 GHz, and
250 GHz, respectively. Then, the prices for these five different
VM levels are 1×10−6 tokens/Gcycle, 2×10−6 tokens/Gcycle,
3×10−6 tokens/Gcycle, 4×10−6 tokens/Gcycle, and 5×10−6

tokens/Gcycle, respectively. The arrival rate of data processing
tasks is 0.6. The task queue lengths of EDs and the servers are
2 tasks and 10 tasks, respectively. The deadline of each data

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 10

processing task di follows the uniform distribution on [T, 5T],
where T is the decision period. To compute the transmit cost,
we set each energy unit corresponds to 2× 10−3 joules [42].
To unitize the cost, we set that each joule costs 1×10−4 tokens
[43]. The rewards for successfully finishing tasks follow the
uniform distribution on [1× 10−6, 1× 10−5] tokens.

For the mining tasks, we set the parameters in the simula-
tions according to [31]. The data size of the block to be mined
is [5, 10] Kb [16]. Similar to data processing tasks, there are
five different VM levels for mining tasks, whose hash powers
are 20 MHash/s, 40 MHash/s, 60 MHash/s, 80 MHash/s, and
100 MHash/s, respectively [34]. In addition, the prices are
2× 10−5 tokens, 4× 10−5 tokens, 6× 10−5 tokens, 8× 10−5

tokens, 1 × 10−4 tokens respectively. The hash power of the
blockchain network follows a uniform distribution on [1×103,
1 × 105] GHash/s. In addition, the miner that first solves
the complex mathematical problem and achieves consensus
is rewarded with R = 30 tokens.

For the design of the DNN, we use two hidden layers
consisting of 200 neurons and 100 neurons. The activation
functions of hidden layers are Rectified Linear Unit (ReLU).
In addition, as the action uses binary encoding, the activation
functions of output layers in actor networks are Sigmoid
functions. We set the size of the replay memory as 10240,
the batch size as 128, and the training interval as 10.

For the parameters of AGA, the initial probability of
crossover pc is 0.8, and the initial mutation rate pm is 0.01. We
assign k2 and k4 a value of 0.5 and assign k1 and k3 a value
of 0.8 in Equation (24) and (25). We set the initial value of K
as 10 and Kmax as 100. During each successive generation,
AGA uses the roulette-wheel selection as the fitness selection
because of its similarity [44]. However, it is worth noting that
there is no universal selection method for all problems. Thus,
numerical experiments are required to obtain the best selection
methods.

B. Simulation Design

1) Evaluation Metrics:

• Average cost: This can be calculated by the ratio of
system cost to the number of EDs in the system.

• Task drop rate: This is the percentage of the failed data
processing tasks, which is used to evaluate the decision
of resource allocation.

• Average transmit time: This is the average time that spent
on uploading the required data and program code of the
processing tasks. We can use it to evaluate the degree of
the congestion in transmission links.

2) Baseline Algorithm:

• Greedy Algorithm: This algorithm randomly generates
107 actions and selects the best one.

• Genetic Algorithm: Genetic algorithms are commonly
used to search high-quality solutions for problems with
large search space. We set the size of the population
as 200, the crossover probability as 0.7, the mutation
probability as 0.05, and the maximum generation as
10000.

• DDPG: DDPG is a state-of-art DRL method that has
successfully solved many challenging problems across a
variety of domains with large action spaces [30].

0 2000 4000 6000 8000 10000
Number of episodes

0.2

0.4

0.6

0.8

1.0

Lo
ss

Fig. 4. The convergence property of the DRGO algorithm.

C. Convergence Performance

In this simulation, we evaluate the convergence property of
the DRGO algorithm using the above parameter settings. The
convergence of the DRGO algorithm is the crucial property
to obtain a policy which maps states to the optimal actions.
Generally, a neural network is considered to converge when
the learning curve becomes flat. Therefore, we plot the training
loss L(θµ) in each training episode under the scenario where
the number of EDs is 50. The results in Fig. 4 reveal the
convergence behaviors of our algorithm, which show that the
DRGO algorithm converges after 105 episodes. Therefore, the
DRGO algorithm converges at an acceptable speed.

D. Performance Analysis

1) Performance under different numbers of EDs: First,
we study the performance of our algorithm under different
numbers of EDs. Fig. 5 (a) plots the average long-term cost
under scenarios where the numbers of EDs ranging from 5 to
50. The figure shows that our algorithm outperforms the other
three benchmark policies. In particular, the average costs of the
greedy algorithm and the genetic algorithm increase relatively
fast as the number of EDs increases, while the average cost
of the DRGO algorithm shows no clear sign of increasing.
This is because the increasing number of EDs leads to a larger
search space. And in Fig. 5 (b), we plot the task drop rate over
different number of EDs, which shows the same pattern as Fig.
5 (a). This is because the increase of EDs inevitably increases
the data transmitted in the transmission links. In this context,
it takes more time on data transmission when ED chooses to
offload tasks to the server, which may cause execution failure.
Even so, the DRGO algorithm has the lowest task drop rate
and shows no sign of increasing because it can schedule the
routing path to reduce (or even avoid) data congestion.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 11

5 10 15 20 25 30 35 40 45 50
Number of EDs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
ve

ra
ge

 c
os

t

Greedy Algorithm
Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(a) Average cost. vs. Number of EDs

5 10 15 20 25 30 35 40 45 50
Number of EDs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ta
sk

 d
ro

p
ra

te

Greedy Algorithm
Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(b) Task-drop rate. vs. Number of EDs

20 22 24 26 28 30 32 34 36 38 40
Required CPU cycles (Gcycles)

1

2

3

4

5

6

7

A
ve

ra
ge

 c
os

t

Greedy Algorithm
Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(c) Average cost vs. Required CPU cycles.

20 22 24 26 28 30 32 34 36 38 40
Required CPU cycles (Gcycles)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

Ta
sk

 d
ro

p
ra

te

Greedy Algorithm
Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(d) Task-drop rate vs. Required CPU cycles.

100 200 300 400 500 600 700 800 900 1000
Uploading data size (KB)

1

2

3

4

5

6

7

A
ve

ra
ge

 c
os

t
Greedy Algorithm
Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(e) Average cost vs. Uploading data size.

100 200 300 400 500 600 700 800 900 1000
Uploading data size (KB)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
ve

ra
ge

 tr
an

sm
it

tim
e

Greedy Algorithm
Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(f) Average transmit time vs. Upload data size.

Fig. 5. Simulation results under: (a)-(b) different numbers of EDs; (c)-(d) different CPU cycles; (e)-(f): different uploading data sizes.

2) Performance under different CPU cycles: Next, we con-
sider the impact of different CPU cycles required to execute
the tasks. In this simulation, the required CPU cycles li
of the data processing tasks range from 20 Gcycles to 40
Gcycles. In Fig. 5 (c), we plot the average cost of all four
algorithms. Because larger CPU cycles often require more
energy to finish tasks, the average long-term cost of all four
algorithms increases. However, the average cost of the DRGO
algorithm increases relatively slowly compared with three
baseline algorithms, indicating that the DRGO algorithm can
make intelligent offloading decisions to reduce the execution
cost. In addition, Fig. 5 (d) plots the task drop rate, which
shows that the DRGO algorithm achieves the lowest task
drop rate. This is because the intelligent decisions about tasks
executions decrease the execution delay.

3) Performance under different data sizes: In this simula-
tion, we consider how the size of the required data during
execution impacts the performance. We record the average
cost of the system for various data sizes ranging from 100
KB to 1000 KB. In Fig. 5 (e), we plot the average long-
term cost under different data sizes. The figure shows that the
average long-term cost of the DRGO algorithm increases much
more slowly compared with the greedy algorithm and the
genetic algorithms. There are two reasons for this difference.
On the one hand, a larger data size requires more energy
on transmission. The DRGO algorithm can arrange a data
transmission path that avoids data congestion and unnecessary
cost. To prove it, we plot the average transmit time under

different data size in Fig. 5 (f). We can see that the DRGO
algorithm has the shortest transmit time. In addition, it is worth
noting that the gap between the DRGO algorithm and the other
three algorithms grows steadily, indicating that the DRGO
algorithm brings greater performance gains under scenarios
with a larger size of transmission data. On the other hand,
a larger data size requires more space on memory during
queuing. However, the memory space is not infinite in our
considered scenario. Therefore, a poor offloading policy faces
a task-failure penalty when if is not enough space for new
tasks.

E. Scalability Analysis

In general, the dimension of a DNN input is an invariant
value, while the adding and exiting of EDs are common for
MEC. To support that, we regard the remaining ED states in
the DNN as empty states if the number of EDs is smaller than
the preset training value. For example, given the preset training
value Vt and the actual number of EDs Va (Va < Vt), we set
the remaining Vt − Va states to be 0 and drop the remaining
Vt−Va actions in the output of the DRGO algorithm. On the
other hand, if Va > Vt, we divide the collected EDs’ states
into several parts and input these parts to the actor network in
turn. Therefore, in this simulation, our goal is to validate the
scalability of the DRGO algorithm, which is the performance
of the DRGO algorithm under scenarios where the number of
EDs is larger or smaller than the preset value in training.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 12

20 22 24 26 28 30 32 34 36 38 40
Preset value in training

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
A

ve
ra

ge
 c

os
t

Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(a) Average cost vs. Preset value in training.

30 32 34 36 38 40 42 44 46 48 50
Preset value in training

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

 c
os

t

Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(b) Average reward vs. Preset value in training.

30 32 34 36 38 40 42 44 46 48 50
Preset value in training

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Ta
sk

 d
ro

p
ra

te

Genetic Algorithm
DDPG Algorithm
DRGO Algorithm

(c) Task-drop rate vs. Preset value in training.

Fig. 6. Scalability Analysis.

First, we apply the DRGO algorithm to environments with
fewer EDs than the preset value used in the training phase.
And we set the number of EDs in the environment as 20. As
shown in Fig. 6 (a), the preset values of EDs in the DRGO
algorithm and DDPG algorithm range from 20 to 40 and the
baseline algorithm is the genetic algorithm, which achieves
higher performance than the greedy algorithm in the previous
simulations. We can see that although larger preset training
values increase the cost, the average costs of the DRGO
algorithm are still lower than the greedy algorithm.

Next, we apply the DRGO algorithm to environments with
more EDs than the preset value. In this simulation, we set the
number of EDs as 50 and plot the average cost in Fig. 6 (b).
The figure shows that although the DDPG algorithm suffers
from higher cost when the preset value in training is lower
than 36, the DRGO algorithm still performs well and reaches
a lower cost than the genetic algorithm. In Fig. 6 (c), we go one
step further and plot the task-drop rate of all three algorithms
under the same environment setting. The figure shows that the
task-drop rate of the DRGO algorithm remains the smallest.
These simulation results indicate that our proposed DRGO
algorithm can quickly adapt to environments where the number
of EDs is larger or smaller than the preset values in the training
phase.

VII. CONCLUSION

In this paper, we propose a deep reinforcement learning-
based online computation offloading approach for blockchain-
empowered MEC, in which both mining tasks and data pro-
cessing tasks are considered. To achieve long-term offloading
performance, our DRGO algorithm uses model-free deep re-
inforcement learning to adapt to highly dynamic environments
and maximize the long-term reward. In particular, to overcome
the slow convergence caused by the high-dimensional action
space, the DRGO algorithm takes advantage of the genetic
algorithms into deep reinforcement learning during the explo-
ration process, survives the curse of high-dimensional action
space, and converges at a acceptable speed. Simulation results
have shown that the DRGO algorithm achieves better perfor-
mance compared with three representative benchmark policies
and shows strong robustness under various environments. In
future work, we plan to study the exploration mechanism to

further improve the efficiency of the exploration, which is the
key to solve the convergence problem of deep reinforcement
learning.

REFERENCES

[1] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng. Qos-aware
cooperative computation offloading for robot swarms in cloud robotics.
IEEE Transactions on Vehicular Technology, 68(4):4027–4041, April
2019.

[2] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang.
Blockchain for secure and efficient data sharing in vehicular edge
computing and networks. IEEE Internet of Things Journal, pages 1–
1, 2019.

[3] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato. Mobile-edge computation
offloading for ultradense iot networks. IEEE Internet of Things Journal,
5(6):4977–4988, Dec 2018.

[4] Z. Li, Z. Yang, S. Xie, W. Chen, and K. Liu. Credit-based payments
for fast computing resource trading in edge-assisted internet of things.
IEEE Internet of Things Journal, pages 1–1, 2019.

[5] Z. Li, Z. Yang, and S. Xie. Computing resource trading for edge-cloud-
assisted internet of things. IEEE Transactions on Industrial Informatics,
pages 1–1, 2019.

[6] W. Chen, Z. Zhang, Z. Hong, C. Chen, J. Wu, S. Maharjan, Z. Zheng,
and Y. Zhang. Cooperative and distributed computation offloading for
blockchain empowered industrial internet of things. IEEE Internet of
Things Journal, pages 1–1, 2019.

[7] J. Kang, Z. Xiong, D. Niyato, P. Wang, D. Ye, and D. I. Kim.
Incentivizing consensus propagation in proof-of-stake based consortium
blockchain networks. IEEE Wireless Communications Letters, 8(1):157–
160, Feb 2019.

[8] Z. Xiong, S. Feng, W. Wang, D. Niyato, P. Wang, and Z. Han. Cloud/fog
computing resource management and pricing for blockchain networks.
IEEE Internet of Things Journal, pages 1–1, 2019.

[9] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo. Traffic and
computation co-offloading with reinforcement learning in fog computing
for industrial applications. IEEE Transactions on Industrial Informatics,
15(2):976–986, Feb 2019.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, February 2015.

[11] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui. Deep learning for
super-resolution channel estimation and doa estimation based massive
mimo system. IEEE Transactions on Vehicular Technology, 67(9):8549–
8560, Sep. 2018.

[12] Y. Kawamoto, H. Takagi, H. Nishiyama, and N. Kato. Efficient resource
allocation utilizing q-learning in multiple ua communications. IEEE
Transactions on Network Science and Engineering, pages 1–1, 2018.

[13] Y. Zhang, J. Yao, and H. Guan. Intelligent cloud resource management
with deep reinforcement learning. IEEE Cloud Computing, 4(6):60–69,
November 2017.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 13

[14] M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and
mutation in genetic algorithms. IEEE Transactions on Systems, Man,
and Cybernetics, 24(4):656–667, April 1994.

[15] W. Chen, B. Liu, H. Huang, S. Guo, and Z. Zheng. When uav swarm
meets edge-cloud computing: The qos perspective. IEEE Network,
33(2):36–43, March 2019.

[16] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song. Computation
offloading and content caching in wireless blockchain networks with
mobile edge computing. IEEE Transactions on Vehicular Technology,
67(11):11008–11021, Nov 2018.

[17] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, and K. Nakamura. Qos-
aware robotic streaming workflow allocation in cloud robotics systems.
IEEE Transactions on Services Computing, pages 1–1, 2018.

[18] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui. Flopcoin: A
cryptocurrency for computation offloading. IEEE Transactions on
Mobile Computing, 17(5):1062–1075, May 2018.

[19] Y. Wang, M. Liu, J. Yang, and G. Gui. Data-driven deep learning for
automatic modulation recognition in cognitive radios. IEEE Transactions
on Vehicular Technology, 68(4):4074–4077, April 2019.

[20] G. Gui, H. Huang, Y. Song, and H. Sari. Deep learning for an effective
nonorthogonal multiple access scheme. IEEE Transactions on Vehicular
Technology, 67(9):8440–8450, Sep. 2018.

[21] M. Liu, R. Yu, Y. Teng, V. Leung, and M. Song. Performance
optimization for blockchain-enabled industrial internet of things (iiot)
systems: A deep reinforcement learning approach. IEEE Transactions
on Industrial Informatics, pages 1–1, 2019.

[22] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, and S. Guo. Green
resource allocation based on deep reinforcement learning in content-
centric iot. IEEE Transactions on Emerging Topics in Computing, pages
1–1, 2018.

[23] M. Liu, T. Song, and G. Gui. Deep cognitive perspective: Resource
allocation for noma-based heterogeneous iot with imperfect sic. IEEE
Internet of Things Journal, 6(2):2885–2894, April 2019.

[24] Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao.
Knowledge-driven service offloading decision for vehicular edge com-
puting: A deep reinforcement learning approach. IEEE Transactions on
Vehicular Technology, pages 1–1, 2019.

[25] M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai.
Learning-based privacy-aware offloading for healthcare iot with energy
harvesting. IEEE Internet of Things Journal, pages 1–1, 2019.

[26] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang. Learning-
based computation offloading for iot devices with energy harvesting.
IEEE Transactions on Vehicular Technology, 68(2):1930–1941, Feb
2019.

[27] Y. Wei, F. R. Yu, M. Song, and Z. Han. User scheduling and
resource allocation in hetnets with hybrid energy supply: An actor-
critic reinforcement learning approach. IEEE Transactions on Wireless
Communications, 17(1):680–692, Jan 2018.

[28] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin. Caching transient
data for internet of things: A deep reinforcement learning approach.
IEEE Internet of Things Journal, pages 1–1, 2019.

[29] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. CoRR, abs/1602.01783, 2016.

[30] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971, 2015.

[31] S. Biswas, K. Sharif, F. Li, B. Nour, and Y. Wang. A scalable blockchain
framework for secure transactions in iot. IEEE Internet of Things
Journal, pages 1–1, 2019.

[32] H. Liu, S. Liu, and K. Zheng. A reinforcement learning-based resource
allocation scheme for cloud robotics. IEEE Access, 6:17215–17222,
2018.

[33] H. Nishiyama, M. Ito, and N. Kato. Relay-by-smartphone: realizing
multihop device-to-device communications. IEEE Communications
Magazine, 52(4):56–65, April 2014.

[34] A.P. Ozisik, G. Bissias, and B.N. Levine. Estimation of miner hash rates
and consensus on blockchains (draft). CoRR, abs/1707.00082, 2017.

[35] M.A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L.A. Maglaras, and
H. Janicke. Blockchain technologies for the internet of things: Research
issues and challenges. CoRR, abs/1806.09099, 2018.

[36] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. CoRR, abs/1511.05952, 2016.

[38] T. Mendes, R. Godina, E. Rodrigues, J. Matias, and J. Catalão. Smart
home communication technologies and applications: Wireless protocol
assessment for home area network resources. 2015.

[39] J. Liu, N. Kato, J. Ma, and N. Kadowaki. Device-to-device communica-
tion in lte-advanced networks: A survey. IEEE Communications Surveys
Tutorials, 17(4):1923–1940, Fourthquarter 2015.

[40] J. Benoit, A. Yao, L. Saladis, and Y. Zheng. Performance evaluations of
multi-hop wirelesshart network and 6lowpan using different topologies.
In 2018 Global Smart Industry Conference (GloSIC), pages 1–5, Nov
2018.

[41] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang. Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing. IEEE Transactions on Vehicular Technol-
ogy, 66(8):7432–7445, Aug 2017.

[42] F. Tang, Z. M. Fadlullah, N. Kato, F. Ono, and R. Miura. Ac-poca:
Anticoordination game based partially overlapping channels assignment
in combined uav and d2d-based networks. IEEE Transactions on
Vehicular Technology, 67(2):1672–1683, Feb 2018.

[43] J. Liu, N. Kato, H. Ujikawa, and K. Suzuki. Device-to-device commu-
nication for mobile multimedia in emerging 5g networks. ACM Trans.
Multimedia Comput. Commun. Appl., 12(5s):75:1–75:20, September
2016.

[44] M. Madiafi K. Jebari. Selection methods for genetic algorithms.
International Journal of Emerging Sciences, 3:333–344, 12 2013.

	Introduction
	RELATED WORKS
	SYSTEM MODEL
	Blockchain network
	Computation offloading for data processing tasks
	Computation offloading for blockchain mining tasks
	Resource purchase scheme in edge/cloud servers
	Trade-off between two tasks
	Multi-hop ad-hoc network

	PROBLEM FORMULATION
	State and Action
	Cost of Data Processing Task
	Local Execution Model
	Offloading Computation Model

	Reward of Mining Task
	Reward of Blockchain Mining
	Cost of Blockchain Mining

	Task Failure Cost and Completion Reward
	Local Execution Failure
	Offload Execution Failure
	Completion Reward

	Cost of System
	MDP-Based Optimization Problem

	ALGORITHM DESIGN
	Overview of the DRGO Algorithm
	Using AGA to Generate the Candidate Solution Set
	Selecting from the Candidate Set in AGA
	Self-Adjusting K in AGA
	Updating Policy with Prioritized Experience Replay

	SIMULATION
	Simulation Setup
	Simulation Design
	Evaluation Metrics
	Baseline Algorithm

	Convergence Performance
	Performance Analysis
	Performance under different numbers of EDs
	Performance under different CPU cycles
	Performance under different data sizes

	Scalability Analysis

	CONCLUSION
	References

