
2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2927682, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 1

A Novel Debt-Credit Mechanism for Blockchain
based Data-Trading in Internet of Vehicles
Kang Liu, Member, IEEE, Wuhui Chen, Member, IEEE, Zibin Zheng, Senior Member, IEEE,

Zhenni Li, Member, IEEE, Wei Liang, Member, IEEE

Abstract—With the advancement and emergence of diverse
network services in Internet of Vehicles (IoV), large volume of
data are collected and stored, making data important properties.
Data will be one of the most important commodities in the future
blockchain-based IoV systems. However, efficiency challenges
have been commonly found in blockchain-based data markets,
which is mainly caused by transaction confirmation delays and
the cold-start problems for new users. To address the efficiency
challenges, we propose a secure, decentralized IoV data-trading
system by exploiting the blockchain technology, and design an
efficient debt-credit mechamism to support efficient data-trading
in IoV. In the debt-credit mechanism, a vehicle with loan demand
could loan from multi-vehicles by promising to pay interest and
reward. In particular, we encourage loaning among vehicles by a
motivation-based investing and pricing mechanism. We formulate
a two-stage Stackelberg game to maximize the profits of borrower
vehicle and lender vehicles jointly. In the first stage, the borrower
vehicle set the interest rate and reward for the loan as its pricing
strategies. In the second stage, the lender vehicles decide on their
investing strategies. We apply backward induction to analyze the
sub-game perfect equilibrium at each stage for both independent
and uniform pricing schemes. We also validate the existence and
uniqueness of Stackelberg equilibrium. The numerical results
illustrate the efficiency of the proposed pricing schemes.

Index Terms—internet of vehicles, blockchain, data-trading,
debt-credit, Stackelberg game

I. INTRODUCTION

Along with the continuing development of intelligent vehic-
ular equipments and wireless access technology, the concept of
the Internet of Vehicles (IoV) has attracted widespread atten-
tions by industry and academia [1], [2]. An universal network
framework of vehicles includes all existing heterogeneous
networks and vehicle-related mobile devices. This concept is
strongly shaped due to highly growing number of vehicles
and mobile devices, such as smartphones, laptops, wearable
smart devices, and other sensor enabled devices [3]. With the
development of diverse network services, the data collected
and stored in IoV are explosive increasing, and are becoming
non-negligible resources [4], [5]. The current IoV framework
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usually adopt Cyber-Physical System (CPS) as a centralized
information infrastructure [6], [7]. In the CPS framework,
vehicle-vehicle interactions such as data exchanging and trad-
ing are conducted via a management center, which has high
performance and reliability requirements for data storage and
computation-intensive tasks. Under the background of big data
and cloud storage technology, data exchanging and trading will
become important in future IoV. However, under the current
cloud-based centralized IoV framework, the loss of control
over users’ data has became a very serious challenge, making
it difficult to protect privacy, boost innovation, and guarantee
data sovereignty.

Recently, blockchain technology has emerged with its ad-
vantages of decentralization, security, and trust [8], [9], [10].
Blockchain technology has been considered as a feasible
solution for addressing the challenges of trusty and security in
Internet of Things (IoT) [11], [12], [13]. With the assistance
of blockchain, IoT devices could trade energy or resources
with other un-trusted peers securely [14], [15], [16]. Espe-
cially, researchers have also study applying blockchain in IoV
scenarios for enhancing data security [17], which motivate us
to take a further study of establishing an efficient, peer-to-peer
(P2P) data-trading system for IoV. Li et al. [18] proposed
a blockchain-based secure scheme for IoT data storage and
protection, and exploited this scheme for data-trading. Liu et
al. [19] investigated the security issues of the data interactions
in the eclectric vehicles cloud and edge (EVCE) computing,
and proposed blockchain-inspired “data coins” to support
secure data interactions.

In the scenario of IoV, data interactions frequently occur
among multiple participating roles, such as vehicle-vehicle,
vehicle-roadside, and vehicle-infrastructure interactions [3].
Data commodities in IoV usually contain sensitive personal
information, thus the guarantee of security and privacy is
crucial for users involving data-trading [20]. The blockchain-
based trading system has the advantages of decentralization
and security, thus can provide security and privacy protection
for IoV data-trading. In the other hand, blockchain-based
trading system still faces many challenges. First, the mobility
of vehicles makes the connections of IoV instability and
frequently changes. The orders of IoV data commodities are
frequently interrupted and re-pricing is necessary. This poses
challenges of efficiency to IoV data-trading. Second, IoV data
usually represent high perishability. The perishable IoV data
suffer a greater loss in value with the trading time gap getting
larger [8]. For example, the smart vehicle navigation system
needs the latest nearby traffic and environmental information
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to avoid traffic jams. The consensus process in a blockchain-
based system increases the transaction confirmation delays,
which affects trading efficiency and funds turnover of data-
requester. During frequently data-trading of IoV, data re-
questers usually do not have enough funds to support their next
transaction immediately due to the transaction confirmation
delays. Third, in IoV scenario there are many occasional
users. It is difficult for such new users to participate in data-
trading before they get data tokens by selling their data, which
reduces the trading willingness of new users. Such “cold-start”
problem also increases the barriers for new users. To overcome
the above challenges in data-trading, the blockchain-based IoV
system needs a flexible P2P debt-credit mechanism to help
data requesters pay for their transactions immediately even if
there are not enough funds in their accounts. The debt-credit
mechanism can improve trading efficiency and solve the “cold-
start” problem.

In this paper we design an auxiliary debt-credit mechanism
for the blockchain-based IoV data-trading system. We first
describe typical P2P data-trading and loaning scenarios in
IoV. Then we present an unified data-trading IoV framework
including buyer vehicles, seller vehicles, borrower vehicles and
lender vehicles. To improve trading efficiency, we propose a
motivation-based debt-credit mechanism. The proposed debt-
credit system adopts a multiple-multiple, pure P2P debt-credit
mechanism. We encourage debt-credit businesses by providing
both interests and rewards to the lender vehicles. To the
best of our knowledge, we are the first to introduce debt-
credit mechanism into IoV data-trading system. The main
contributions of this work are summarized as following.

• In this paper we establish a blockchain-based data-trading
system for IoV. To support efficient data-trading, we
design an auxiliary debt-credit mechanism for the data-
trading system.

• We formulate an investing and pricing model for the
debt-credit transaction, and adopt a two-stage Stackelberg
game to maximize the utility of the borrower vehicle.
In this game, the borrower vehicle acts as leader and
determines the loan rate for each lender vehicle. The
lender vehicles act as followers and determine their
investing amount.

• We derive an unique Nash equilibrium point among
lender vehicles in the second stage. We investigate the
independent pricing as well as uniform pricing schemes
in the first stage. We prove that for both the independent
and uniform pricing schemes, the Stackelberg equilibrium
is derived analytically.

• We conduct simulation in a virtual map to evaluate the
performance of the proposed pricing schemes. Numeri-
cal results show that our proposed pricing schemes are
effective and efficient. The independent pricing scheme
performs better than uniform pricing scheme for maxi-
mizing the profit of the borrower vehicle, and can better
encourage data-trading and loaning.

The rest of this paper is organized as follows. Section II is
the research work related to this paper. In Section III, we intro-
duce the system components of the data-trading framework as

well as the debt-credit system. We propose a new architecture
for the blockchain-based IoV system. We also describe the
key operations of debt-credit business. In Section IV, we
formulate the two-stage Stackelberg game for the investing
and pricing problem. We analyze the optimal investing amount
of lender vehicles as well as the profit maximization of the
borrower vehicle by using backward induction for both the
independent and uniform pricing schemes. In Section V, we
give the performance evaluation with simulation and results.
In Section VI, we give the conclusions of the paper with future
directions.

II. RELATED WORKS

With the development of intelligent vehicles and vehicular
networks, the sharing and interaction of vehicular data have
also been focused by both academia and industry. Vehicular
data includes data generated from vehicular network and the
data required by vehicle users. How to securely and efficiently
share vehicular data is a challenge issue. Ko et al. [21]
presented an efficient data dissemination system in vehicular
networks via the cooperation of infrastructure-to-vehicle and
vehicle-to-vehicle communication. More et al. [22] proposed a
cooperative data sharing with secure framework for voluntary
services in vehicular networks. Ito et al. [23] proposed a
road alert information sharing system with multiple vehicles
considering various communication network environments by
using vehicle-to-vehicle communication. Moreover, Feng et al.
[24] proposed and analyzed a selective sharing scheme for
vehicular data owners to share their sensitive data with some
authorized data users in a vehicular social network. The above
works expanded the application of vehicular data in various
IoV scenarios. However, the security challenge and privacy
risk exist in the sharing of vehicular data .

In the last few years, the application of the blockchain has
been extended to IoT. Ferrag et al. [25] gave an overview of the
blockchain protocols and applications for IoT, and discussed
the existing issues and challenges in blockchain based IoT
framework. Moreover, many researchers have investigated the
potential of blockchain for establishing a trusted and secure
trading system for IoV. Kang et al. [26] exploited a consortium
blockchain to design a localized P2P energy-trading system
in which electric vehicles can trade energy. This motivates
us to study how to establish a blockchain based data-trading
system for IoV. Singh et al. [27] proposed a blockchain
based crypto Trust point (cTp) mechanism to build a secure
trusted decentralized environment for vehicular data-sharing.
Yang et al. [28] proposed a decentralized trust management
system for IoV based on blockchain. The above systems did
not consider the efficiency issue of data-trading. Vehicular
data are characterized by perishability [4]. Data requesters
in IoV usually urgently need the desired data, such as real-
time road conditions data for trip time prediction. Transaction
efficiency becomes a bottleneck problem for blockchain-based
data-trading system.

In blockchain-based data-trading system, users are usually
short of funds due to the transaction comfirmation delays and
“cold-start” problem, which significantly influences the trans-
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action efficiency. Li et al. [29] designed a credit-based pay-
ment scheme to overcome the efficiency issue of blockchain-
based energy-trading system in IIoT. This scheme depends
on authorized “Credit Bank” which makes it not a pure P2P
mechanism. User privacy is still facing security risks. In this
article, we exploit the blockchain technology to propose an
efficient data-trading and loan system for IoV. In particular,
we design a motivation-based investing and pricing mechanism
for the debt-credit system to address the efficiency challenge
of data-trading in IoV.

III. BLOCKCHAIN-BASED DATA-TRADING AND
DEBT-CREDIT SYSTEM

In this section, we introduce the entities and core com-
ponents of the blockchain-based data-trading and debt-credit
system. We propose a blockchain-enhanced five layered ar-
chitecture for IoV based on the legacy architecture. We also
describe the key operations of the debt-credit process.

A. Entities in the Data-Trading and Debt-Credit System

The explosive increase of data generated in IoV makes
it impossible to store and manage all data in the local
vehicular devices. Our proposed data-trading and debt-credit
system includes multi-interface based station as aggregators
which provide high-speed communication and ledge storage
service for vehicles. Fig. 1 illustrates the data-trading and
loan system we consider. This system consists of the following
components.

1) Vehicles: Vehicles in our proposed system can exchange
their private data as commodities. Meanwhile, the vehicles
can also borrow and lend their data tokens, which we call
“data coins”, with other peers. Vehicles can gain data coins by
selling their private data, or borrowing data coins from other
vehicles. Vehicles which lend their data coins to others can also
get revenue of data coins as interests. Thus, in the proposed
data-trading and debt-credit system, vehicles play multiple
roles: seller vehicles, buyer vehicles, borrower vehicles and
lender vehicles. Each vehicle chooses its role according to its
data requirement and economic state.

2) Aggregators: In the data-trading and debt-credit system,
aggregators work as brokers to manage trading-related activ-
ities and provide edge-computing services. The aggregators
also support high-speed communication among vehicles. In
a typical IoV system, the communication infrastructure (i.e.,
base stations) usually act as the aggregators [30]. Aggregators
also provide storage and backup for vehicular data, especially
when the local storage space is limited. Vehicles can transmit
their data via vehicle-to-vehicle communication directly or via
the aggregators.

B. Unified Blockchain for Data-Trading and Debt-Credit Sys-
tem

In the proposed data-trading and debt-credit system, we
exploit a consortium blockchain for secure P2P data-trading
and loan services. Based on the five layered legacy IoV
architecture proposed in [3], we designed a new blockchain-
enhanced layered architecture for IoV, which includes the

Consortium 
Blockchain Nodes 

Data-trading 

Interface Base 
Station 

 Account 

 Smart contract 

Blockchain 
Ledger 

Fig. 1. Blockchain based data-trading and loaning system in IoV.

following layers: perception layer, coordination layer, artificial
intelligence layer, application layer and business layer. The
proposed five layered architecture with the related protocol
stack is shown in Fig. 2.

1) Data Layer: The first layer of our architecture is data
layer, which is consisted of the IoV perception sub-layer and
blockchain data sub-layer. IoV perception sub-layer is mainly
responsible to gather vehicular data via vehicular sensors and
personal devices. The blockchain data sub-layer is represented
by a series of connected blocks. Each block contains a hash
pointing to the previous block such that all blocks comprise
the blockchain. The transactional data stored in the blocks are
visible to all vehicles. Transactional data are encrypted and
signed with the digital signature for security.

2) Network Layer: The second layer of the architecture is
network layer, which is consisted of a network coordination
module and P2P network sub-layer of blockchain. The network
coordination module is involving heterogeneous networks
including IEEE 802.11p, 802.11 and WAVE-1609.4. In our
system, we exploit a consortium blockchain to support secure
and efficient data-trading and loan services. The aggregators
are selected as the authorized blockchain nodes. Therefore,
the P2P connections are actually built among the authorized
aggregators.

3) Artificial Intelligence Layer: The third layer is artificial
intelligence layer, which is consisted of the blockchain consen-
sus sub-layer, and vehicular-oriented computing and analysis
services. The protocols in this layer include CALM service
sub-layer, WAVE-1609.6 service related protocols, vehicular
cloud computing and big data analysis related protocols,
and the consensus protocol of blockchain. In our system,
the authorized aggregators perform the proof-of-work(PoW)
consensus algorithm for vehicles and write the blocks with
transactional data. Transactional data are publicly audited by
all authorized aggregators [30].



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2927682, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 4

IoV perception sub-layer

MAC-802.11p, 802.11, 1609.4

P2P Network Layer

Vehicular Cloud Computing 
& Big Data Analysis  

CALM Service Layer
WAVE-1609.6

Resource Handler-1609.1

IoV Business 
Models

Data Layer

Network Layer

Artificial 
Intelligence 
Layer

Application 
Layer

Business Layer

Blockchain consensus sub-layer

Blockchain data sub-layer

Incentive sub-layer Smart contract sub-layer

Debt-Credit

Data Trading

Components of Legacy IoV System Components of Blockchain System

Fig. 2. Blockchain-enhanced five-layered IoV architecture.

4) Application Layer: The fourth layer is application layer,
which is consisted of resource handler protocol WAVE-1609.1,
blockchain intensive sub-layer, and blockchain smart contract
sub-layer. The resource handler protocol could manage re-
source among IoV applications. Blockchain intensive sub-
layer is responsible for rewarding the miner that first provides
valid PoW with digital tokens. Smart contracts are a series of
predefined protocols operated by all peers in a blockchain-
based system for specific service requirements. Blockchain
smart contract sub-layer defines the smart contracts involving
trading and debt-credit business.

5) Business Layer: The topmost layer is business layer,
which is consisted of IoV business models, data-trading busi-
ness, and debt-credit business. As defined in [3], four types of
business models are considered in IoV, i.e., insurance, sale,
service and advertisement. Data-trading business and debt-
credit business are guaranteed by the blockchain system with
security.

C. Operations of Debt-Credit Business

We now discuss the key operations of the proposed debt-
credit mechanism. The key operations of debt-credit process
are illustrated in Fig. 3.

1) System initialization: In the proposed system, each vehi-
cle will become a legitimate entity by registration with a trust-
ed authority. Smart contracts deployed in the system ensure the
authority of vehicles. When joining the system, each vehicle
obtains an unique identity, its public and private keys, and
its encrypted signature. The authority also allocates a wallet
address for each vehicle as its account. After registration, the
authority generates a mapping list for each vehicle and stores
the list in each aggregator.

2) Choosing different roles: In the debt-credit scenario, ve-
hicles are divided into borrower vehicles and lender vehicles.
Vehicles without enough funds become the borrower vehicles,

Borrower vehicle 

⑥ Repay the loan with the interest to the lender 

④ Send the loan request (IOU) to the lender vehicle 

⑤ Send the required data coins 

Block1 Block2 Block3 

Blockchain 

⑧ Audit the loaning 
records into the block 

IoV 

Lender vehicle 

Borrower vehicle’s wallet Lender vehicle’s wallet 

Fig. 3. Key operations of debt-credit process.

and vehicles with surplus funds become the lender vehicles.
Lender vehicles should register their loan services into the
service pools. The borrower vehicle asks for a list of lender
vehicles from the service pools and select the appropriate
lender vehicles.

3) Borrowing and Lending: Our proposed debt-credit mech-
anism supports a multiple-multiple borrowing and lending
model. A borrower vehicle can get its loans from multiple
lender vehicles, and a lender vehicle can also provide loans to
multiple borrower vehicles. In this debt-credit machanism, the
loan amount and rate of each borrower-lender pairs are derived
by a motivation-based investing and pricing mechanism. More
details are given in Section IV. After determining the loan
amount and interest rate, the borrower vehicle will send an
IOU (i.e., a promise to pay a debt) to each lender vehicle.
After verifying the IOU as well as the identity of the borrower
vehicle, the lender vehicles send corresponding data coins
to the public wallet address of the borrower vehicle. In the
repayment process, the borrower vehicle sends the repayments,
including both capital and interest, to the wallet address of
each lender vehicle. The lender vehicles confirm the amount of
repayments and whether the repayments are overdue. Finally,
both the lender vehicles and borrower vehicle will update their
credit rate and broadcast the transactional data to aggregators
for public audit.

4) Building blocks and carrying out consensus process:
Authorized aggregators will collect all transactional data for
a certain period with encrypted signatures, and structure them
into blocks. Each block contains a cryptographic hash for its
prior block, thus form the blockchain. The authorized aggrega-
tors that firstly gives a valid PoW in the consensus process will
be selected as the blockchain leader. The blockchain leader
broadcasts block data, a timestamp, and its PoW to other peers
for verification and audit. Other peers then reply with their
audit results for mutual supervision and verification. If all the
auditors agree on the block data, the blockchain leader will add
its block into the blockchain and obtain its mining rewards.
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IV. MOTIVATION-BASED INVESTING AND PRICING
MECHANISM FOR DEBT-CREDIT SYSTEM

In the scenario of data-trading, buyer vehicles obtain the
required data by paying data coins to the seller vehicles.
The perishability of digital goods requires an efficient trading
and payment manner [4]. However, due to the transaction
confirmation delays, some buyer vehicles may not have enough
data coins for their required data. The “cold-start” problem
for new users also increases the barriers for new participants
joining the trading. In this section, we present a debt-credit
system to address the challenge of efficiency, and solve the
“cold-start” problem of new users. We propose a motivation-
based investing and pricing mechanism for the debt-credit
system. In particular, we formulate a two-stage Stackelberg
game to solve the pricing problem in the debt-credit process.
In this game, the borrower vehicle acts as the leader and sets its
loan rate for each lender. The lender vehicles act as followers
and decide their optimal investing strategies.

TABLE I
NOTATIONS

Symbol Definition
N Set of lender vehicles
N The number of lender vehicles
xi The investing amount of lender vehicle i

xmax
i The maximum investing amount of lender vehicle i
ri The loan rate from lender vehicle i

rmin
i Minimum lending rate of lender vehicle i
rmax Maximum loan rate of the borrower vehicle

x The investing amount profile of all the lender vehicles

x−i
The investing amount profile of all

other lender vehicles except lender vehicle i
r The loan rate profile of all the lender vehicles

r−i
The loan rate profile of all other lender

vehicles except lender vehicle i
R The unstable reward

φi
The investment willing of lender vehicle i

for the unstable reward
w The investment willing factor for the unstable reward
X The minimum loan demand of the borrower vehicle
η The greedy factor of borrower vehicle for the loan

A. Problem Formulation

The proposed loan system is similar with a bond-based
investment system. In this system, the borrower vehicle raise
the required funds by issuing bonds with a given repayment
term. The lender vehicles act as investors. Each investor will
purchase some bonds from the borrower vehicle. The borrower
vehicle has the duty to repay both capital and interest to the
investors within the prescribed repayment term.

We consider that there are a group of N lender vehicles,
the set of which is denoted by N = {1, ..., N}, that can
provide lending services to the borrower vehicle. The borrower
vehicle obtains its required data coins by issuing bonds with a
certain interest rate to each lender vehicle. The lender vehicles
purchase the bonds by paying data coins to the borrower
vehicle. In this model, the borrower vehicle determines its
loan rate from each lender vehicle i ∈ N , which is denoted
by ri. Lender vehicle i determines its investing amount, i.e.,
the lending amount, which is denoted by xi. The minimum

loan requirement of the borrower vehicle is denoted by X .
The maximum investing amount, i.e, the maximum lending
amount, of i is denoted by xmaxi . The minimum lending rate
of i is denoted as rmini . The maximum loan rate the borrower
vehicle can give is denoted by rmax. Let x , (x1, ..., xN )
and x∗ , (x∗1, ..., x

∗
N ) represent the investing amount profile

and optimal investing amount profile of the lender vehicles, re-
spectively. Similarly, let r , (r1, ..., rN ) and r∗ , (r∗1 , ..., r

∗
N )

represent the loan rate profile and the optimal loan rate profile
of the borrower vehicle for each lender vehicle. The major
notations used in this paper are listed in Table 1.

The interactions among borrower vehicle and lender vehi-
cles can be modeled as a two-stage Stackelberg game [29].
In this game, the borrower vehicle acts as the leader and sets
its loan rate profile r in stage I. The lender vehicles act as
the followers and decide their investing amount profile x in
stage II. Fig. 4 illustrates this two-stage Stackelberg game.
In this model, we design a motivation-based investing and
pricing mechanism to provide economic incentives for the
lender vehicles. In this mechanism, the revenue of each lender
vehicle i consists a steady interest income, i.e., xiri, and an
unstable reward R. In a loan transaction, all the lender vehicles
can obtain their interest incomes, but only one lender vehicle
can obtain the unstable reward R. In our model, the lender
vehicle with more investment should be more likely to win
the unstable reward. Thus, we define the probability that lender
vehicle i successfully wins the unstable reward as:

Pi(xi, x−i) =
xi∑
j∈N xj

. (1)

Considering the economic risks of investing for the unstable
reward, which is a discouragement to the investors, we define
the investment willingness of i for the unstable reward as:

φi = w(xmaxi +R− xi)/xmaxi , (2)

where w is a predefined investment willing factor for R.
Therefore, the expected utility of lender vehicle i can be given
as:

LUi(xi, x−i, ri) =
xi∑
j∈N xj

φiR+ (ri − rmini )xi. (3)

The satisfaction of the borrower vehicle is related to total
raised funds, i.e., the investing amount from all lender vehicles.
We denote the satisfaction function of the borrower vehicle as:

BUsat(x) = η ln(
∑
i∈N

xi −X + 1), (4)

where η > 0 is a predefined greedy factor of the borrower
vehicle, indicating the willingness of the borrower vehicle for
raising more loans.

The profit of the borrower vehicle is its satisfaction minus
the interest and the reward it will pay. Thus the expected profit
of the borrower vehicle is represented as:

BU(x, r) = BUsat(x)−
∑
i∈N

(rixi +
xi∑
j∈N xj

R)

= BUsat(x)−
∑
i∈N

rixi −R. (5)



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2927682, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 6

Lender vehicles (Investors) 

. . . 

Borrower vehicle 

Investment 
Interest revenue 

Unstable reward 

Stage I: Borrower vehicle’s 
pricing strategies 

Stage II: Lender vehicles’ 
investing strategies 

Fig. 4. Two-stage Stackberg game model of loan pricing problem.

By using backward induction, we formulate the optimization
problem for borrower vehicle and lender vehicles as follows.

Problem 1. (lender vehicle i subgame)

maximize
xi

LUi(xi, x−i, ri)

subject to xi ∈ [0, xmaxi ],∀i ∈ N .
(6)

Problem 2. (borrower vehicle subgame)

maximize
r

BU(x, r)

subject to ri ∈ [rmini , rmax],∀i ∈ N .
(7)

Problem 1 and Problem 2 together form the two-stage
Stackelberg game. The objective of this game is to find the
Stackelberg equilibrium in which the profit of the leader is
maximized given that the followers adopt their best responses.

Definition 1. Let x∗ and r∗ denote the optimal investing
amount profile of the lender vehicles and the optimal loan
rate profile of the borrower vehicle for each lender vehicle,
respectively. The point (x∗, r∗) is the Stackelberg equilibrium
if the following conditions,

BU(x∗, r∗) ≥ BU(x∗, r) (8)

and

LUi(x
∗
i , x
∗
−i, r

∗
i ) ≥ LUi(xi, x∗−i, r∗i ),∀xi ≥ 0,∀i ∈ N (9)

are satisfied, where x∗−i is the optimal investing amount profile
of other lender vehicles except i.

In this Stackelberg game, the borrower vehicle can apply
two types of pricing schemes to the lender vehicles: the
independent pricing scheme and the uniform pricing scheme.
These two types of pricing schemes focus on the profit of the
borrower vehicle and the profit of the lender vehicles respec-
tively. In the independent pricing mode, the borrower vehicle
set different loan rate for each lender vehicle independently
to maximize its profit and minimize the cost. In the uniform
pricing mode, the borrower vehicle set the same loan rate for
each lender vehicle. Each lender vehicle impartially get their

interest income based on an uniform loan rate. This mode
embodies the principle of fairness for the investments of the
lender vehicles. We investigate these two pricing schemes, and
conduct equilibrium analysis in the following.

B. Independent Pricing Scheme
We firstly investigate the independent pricing scheme. The

stackelberg game between the borrower vehicle and the lender
vehicles can be divided into a series of sub-games between
the borrower vehicle and each lender vehicle. Therefore, we
can solve the pricing problem by deriving the Stackeberg
equilibrium, i.e., the Nash equilibrium, of each sub-game
independently. We use backward induction to analyze the two-
stage Stackelberg game.

1) Lender vehicles’ Investing Strategies in Stage II: Giv-
en the loan rate of the borrower vehicle for each lender
vehicle i ∈ N , i.e., {ri}i∈N , the lender vehicles max-
imize their utilities by determining their optimal invest-
ing strategies. This forms the noncooperative Lender vehi-
cles’ Investing Game (LIG), which is presented as: G =
{N , {xi}i∈N , {LUi(xi, x−i, ri)}i∈N }, where {xi}i∈N is the
set of investing strategies, and LUi(xi, x−i, ri) is the utility
of lender vehicle i corresponding to ri and x. Each lender
vehicle sets its investing strategy to maximize its utility. We
next investigate the Nash equilibrium in the LIG.

Definition 2. The investing mount vector x∗ ,
(x∗1, ..., x

∗
N ) is the Nash equilibrium of G =

{N , {xi}i∈N , {LUi(xi, x−i, ri)}i∈N }, if LUi(x∗i , x∗−i, r∗i ) ≥
LUi(xi, x∗−i, r∗i ) is satisfied for each lender vehicle i ∈ N
and for all xi ∈ [0, xmaxi ].

Theorem 1. An unique Nash equilibrium exists in G =
{N , {xi}i∈N , {LUi(xi, x−i, ri)}i∈N }.

Proof. The strategy space for i is defined to be [0, xmaxi ],
which is a nonempty, convex, compact subset of the Euclidean
space. From (3), LUi(xi, x−i, ri) is apparently continuous
in [0, xmaxi ]. We define α =

∑
i∈N xi as the loan amount

of the borrower vehicle from all lender vehicles. Similarly,
we define βi = α − xi =

∑
j 6=i xj as the loan amount

of the borrower vehicle from other lender vehicles except i,
and assume that βi > xi,∀i ∈ N . We take the first- and
second-order derivatives of (3) with respect to xi to prove its
concavity, which can be written as follows:

∂LUi
∂xi

=
wR

xmaxi α2
[(ri − rmini )

xmaxi α2

wR

+ (xmaxi +R)βi − 2xiα+ x2i ], (10)

and
∂2LUi
∂x2i

=− 2wR

xmaxi α2
[2xmaxi + 2R− 3xi + βi] < 0. (11)

Therefore, we proved that LUi(xi, x−i, ri) is strictly con-
cave with respect to xi. Accordingly, a Nash equilibrium exists
in this noncooperative LIG.

Next, we prove the uniqueness of the Nash equilibrium in
LIG. We investigate the optimal investing strategies {x∗i }i∈N
of lender vehicles.
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λFi(x)−Fi(λx) = λ

√
wR[(

∑
j 6=i xj)

2 + (xmaxi +R)
∑
j 6=i xj ]

wR− xmaxi (ri − rmini )
− λ

∑
j 6=i

xj

−

√
wR[(

∑
j 6=i λxj)

2 + (xmaxi +R)
∑
j 6=i λxj ]

wR− xmaxi (ri − rmini )
+

∑
j 6=i

λxj

=

(
√
λ− 1)

√
wR(xmax

i +R)
∑

j 6=i xj

wR−xmax
i (ri−rmin

i )√
λ(
∑
j 6=i xj)

2 + λ(xmaxi +R)
∑
j 6=i xj +

√
λ(
∑
j 6=i xj)

2 + (xmaxi +R)
∑
j 6=i xj

> 0,∀λ > 1. (18)

Based on ∂LUi

∂xi
= 0, we have

α2xmaxi (ri − rmini )

wR
+ (xmaxi +R)βi − 2xiα+ x2i = 0.

(12)

Therefore, we obtain the best response function for lender
vehicle i by solving (12) as following:

x∗i = Fi(x) =

 xmaxi zi > xmaxi

zi 0 < zi ≤ xmaxi ,
0 zi ≤ 0

(13)

where zi =
√

wR(β2
i +x

max
i βi+Rβi)

wR−xmax
i (ri−rmin

i )
− βi, Fi(x) is the best

response function of lender vehicle i.
Let x∗ denote the Nash equilibrium of LIG. This Nash

equilibrium must satisfy x∗ = F(x), where F(x) =
(F1(x), ...,FN (x)). Fi(x) is the best response function of
lender vehicle i as shown in (13). The uniqueness of the Nash
equilibrium in LIG can be proved by showing that the best
response function of i is a standard function [31].

Definition 3. A function F(x) is a standard function when the
following properties are guaranteed:
(1) Positivity: F(x) > 0;
(2) Monotonicity: If x ≤ x′, then F(x) ≤ F(x′);
(3) Scalability: For all λ > 1, λF(x) > F(λx).

We will prove that Fi(x) satisfies the three properties of a
standard function.

First, for the positivity, we have

Fi(x) =

√
wR(β2

i + xmaxi βi +Rβi)

wR− xmaxi (ri − rmini )
− βi

>
√
(β2
i + xmaxi βi +Rβi)− βi > 0,∀i ∈ N . (14)

Therefore, we prove the positivity of F(x).
Then we prove the monotonicity of F(x) with respect to x.

We first prove the monotonicity of F(x) with respect to βi.
By differentiating (13) with respect to βi, we have

∂Fi(x)
∂βi

=

√
wR[βi + (xmaxi +R)/2]2

[wR− xmaxi (ri − rmini )][β2
i + (xmaxi +R)βi]

− 1 >

√
1 +

(xmaxi +R)2

4[β2
i + (xmaxi +R)βi]

− 1 > 0.

(15)

Let x′ > x, we have the following inequality for lender
vehicle i:

β′i =
∑
j 6=i

x′j >
∑
j 6=i

xj = βi. (16)

Based on (15) and (16), we have:

F(x)−F(x′) > 0. (17)

Therefore, the best response function F(x) is always mono-
tone increasing with x.

Finally, for scalability, we must prove that λF(x)−F(λx) >
0, for all λ > 1. The steps of proving the positivity of λF(x)−
F(λx) are shown in (18).

So far, we have proved that the best response function
F(x) satisfies the three properties of a standard function.
Therefore, an unique Nash equilibrium exists in LIG. The
proof is completed.

In the following, we will analyze the profit maximization
of the borrower vehicle in Stage I under independent pricing
scheme to further investigate the Stackelberg equilibrium.

2) Borrower vehicle’s Pricing Strategies in Stage I: Based
on the Nash equilibrium of the lender vehicles’ investing
strategies in Stage II, the borrower vehicle maximizes its
profit by optimizing its pricing strategies in Stage I. Therefore,
the optimal pricing strategies of the borrower vehicle can be
formulated as an optimization problem. Based on (5), the profit
maximization problem of the borrower vehicle in stage I is
simplified as follows:

maximize
r

BU(x, r) = η ln(
∑
i∈N

xi −X + 1)

−
∑
i∈N

rixi −R

subject to ri ∈ [rmini , rmax],∀i ∈ N .

(19)

Theorem 2. In the borrower vehicle’s pricing game, the
convergence of borrower vehicle’s profit BU(x, r) is guar-
anteed if there are sufficient funds in the loan market, and the
parameter η satisfies the following condition:

η <
(α−X + 1)2(4wR− xmaxi ri + 4xmaxi rmini )

xmaxi (2α− 3X + 3)
,∀i ∈ N .

(20)



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2927682, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 8

Proof. In the independent pricing scheme, we assume that
the borrower vehicle sets the loan rate ri for each lender
vehicle independently. On the other hand, each lender vehicle i
gives its investing strategy mainly based on ri and other lender
vehicles’ investing strategies x−i. In this model, we assume
the investing strategy of i is independent with the borrower
vehicle’s loan rate for other lender vehicles. Thus we have the
following relations:

∂xi
∂rj

= 0,∀j 6= i (21)

and
∂βi
∂ri

= 0,∀i ∈ N . (22)

Based on (13), the loan amount of the borrower vehicle
from all lender vehicles is represented as:

α =

√
wR(β2

i + xmaxi βi +Rβi)

wR− xmaxi (ri − rmini )
,∀i ∈ N . (23)

We derive the first- and second- order derivatives of α with
respect to ri by substituting (21) and (22) into (23), which can
be written as follows:

∂α

∂ri
=
∂xi
∂ri

=
xmaxi

√
wR(β2

i + xmaxi βi +Rβi)

2[wR− xmaxi (ri − rmini )]3/2
, (24)

and

∂2α

∂r2i
=
∂2xi
∂r2i

=
3(xmaxi )2

√
wR(β2

i + xmaxi βi +Rβi)

4[wR− xmaxi (ri − rmini )]5/2
.

(25)

ψi =
∂xi
∂ri

=
xmaxi

√
wR(β2

i + xmaxi βi +Rβi)

2[wR− xmaxi (ri − rmini )]3/2
, (24)

We define ψi = ∂xi

∂ri
> 0 and ϕi = ∂2xi

∂r2i
> 0 for

convenience. Based on (23), (24) and (25) we can obtain the
following relation:

3ψ2
i = αϕi. (26)

Based on (19) and (26), the first- and second-order deriva-
tive of borrower vehicle’s profit with respect to ri is given as
follows:

∂BU

∂ri
=

ψiη

α−X + 1
− (xi + ψiri), (27)

and

∂2BU

∂r2i
=

ηϕi
α−X + 1

− ηψ2
i

(α−X + 1)2
− 2ψi − ϕiri

=
ηϕi(

2
3α−X + 1)

(α−X + 1)2
− 2ψi − ϕiri

= ϕi

2
3α−X + 1

(α−X + 1)2
(η − γi), (28)

where γi =
(α−X+1)2(4wR−xmax

i ri+4xmax
i rmin

i )
xmax
i (2α−3X+3) .

Since there are sufficient funds in the market, we assume
that 2

3α−X+1 > 0. It is easy to derive that ∂
2BU
∂r2i

< 0 if the

condition η < γi is satisfied. The convergence of BU(x, r) is
guaranteed. The proof is completed.

The profit maximization of the borrower vehicle defined
in (19) is a convex optimization problem. We can apply a
low-complexity gradient-based search algorithm to achieve
the maximized profit of the borrower vehicle, as well as the
optimal strategies of both the borrower vehicle and lender ve-
hicles. We adopt Algorithm 1 to obtain the unique Stackelberg
equilibrium and solve the optimal loan pricing problem. The
basic description is explained as follows. First, the leader, i.e.,
the borrower vehicle, offer its initial pricing strategies to the
lender vehicles. Then the subgame of each follower (lender
vehicle) is solved based on the given pricing strategies. Next,
each lender vehicle offers its optimal investing strategy to the
borrower vehicle. After substituting the best response of the
follower’s subgame into the leader’s subgame, we find the
leader’s corresponding pricing strategies which are fed back to
the follower’s subgame. Therefore, the leader’s optimal pricing
strategies can be obtained by a gradient-based algorithm.

Algorithm 1 Iterative gradient algorithm to find the Stackel-
berg equilibrium of the independent pricing scheme.

1: Initialization:
2: Set the initial input r(0) = [r

(0)
i ]i∈N and x(0) = [x

(0)
i ]i∈N ,

where r(0)i ∈ [rmini , rmax] and x
(0)
i ∈ [0, xmaxi ], 1 ← t,

1← τ , a precision threshold ε� 1;
3: while (τ > ε) do
4: for all i ∈ N do
5: i decides its investing strategy x

(t)
i by x

(t−1)
i using

(13);
6: end for
7: for all i ∈ N do
8: The borrower vehicle updates its pricing strategies for

each lender vehicle using a gradient-assisted search
algorithm:

r
(t)
i = r

(t−1)
i + µ

∂BU(x(t), r(t−1))
∂ri

,

9: where µ is the step size of the price update. r(t)i is
subject to [rmini , rmax].

10: end for
11: t← t+ 1,

τ ←
∑

i∈N ‖r
(t)
i −r

(t−1)
i ‖∑

i∈N ‖r
(t−1)
i ‖

,

12: end while
13: Output:BU(x(t), r(t)),r(t) = [r

(t)
i ]i∈N ,x(t) = [x

(t)
i ]i∈N

C. Uniform Pricing Scheme

Then we investigate the uniform pricing scheme. In this
scheme, the borrower vehicle treats all the lender vehicles
equally with an uniform loan rate, i.e., ri = r, ∀i ∈ N . We
use the backward induction to analyze the optimal investing
strategies of lender vehicles and the profit maximization of the
borrower vehicle.
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1) Lender vehicles’ Strategies in Stage II: In the uniform
pricing scheme, the strategy space of the borrower vehicle
becomes r ∈ [max{rmini }i∈N , rmax]. The best response
function of lender vehicle i is similar with (13), which is
represented as follows:

x∗i = Fi(x) =

 xmaxi zi > xmaxi

zi 0 < zi ≤ xmaxi .
0 zi ≤ 0

(29)

where zi =
√

wR(β2
i +x

max
i βi+Rβi)

wR−xmax
i (r−rmin

i )
− βi.

Since in the above section we have proved the existence and
uniqueness of Nash equilibrium in LIG given the independent
pricing scheme, under the uniform pricing scheme the exis-
tence and uniqueness of Nash equilibrium is also guaranteed.
To further investigate the Stackelberg game, we next analysis
the profit maximize of the borrower vehicle.

2) Borrower vehicle’s Strategy in Stage I: Similar to the
independent pricing scheme, in the uniform pricing scheme,
the borrower vehicle maximize its profit based on the Nash
equilibrium of the lender vehicles’ investing strategies in the
Stage II. The optimal pricing strategy of the borrower vehicle
in the uniform pricing scheme can also be formulated as an
optimization problem as follows:

maximize
r

BU(x, r) = η ln[
∑
i∈N

xi −X + 1]

− r
∑
i∈N

xi −R

subject to r ∈ [max{rmini }i∈N , rmax].

(30)

Under the uniform pricing scheme, the borrower vehicle
sets the loan rate for each lender vehicle uniformly instead
of independently. Therefore, in the uniform pricing scheme,
the conditions (21) and (22) are not satisfied. It is difficult to
apply the gradient-based searching algorithm to achieve the
borrower vehicle’s maximize profit as Algorithm 1. However,
we notice that the strategy space of borrower vehicle in the
uniform pricing scheme, i.e., r ∈ [max{rmini }i∈N , rmax], is
a subset of the strategy space in independent pricing scheme,
which is ri ∈ [rmini , rmax],∀i ∈ N . Thus in the uniform
pricing scheme, the convergence of borrower vehicle’s profit
is also guaranteed by the conditions in Theorem 2. We can
adopt Algorithm 2, which applies a distributed pricing way
for the borrower vehicle, to approach the borrower vehicle’s
optimal uniform pricing strategy r∗.

V. PERFORMANCE EVALUATION

In this section, we first provide the security analysis of the
blockchain-based data-trading and debt-credit system. Then,
we conduct extensive simulations to evaluate the performance
of the proposed pricing schemes, including both the indepen-
dent pricing scheme the and the uniform pricing scheme .

A. Security Analysis

Our proposed blockchain-based data-trading and debt-credit
system can provide feasible solution for trusty enhancement,

Algorithm 2 Borrower vehicle’s optimal pricing searching
algorithm of the uniform pricing scheme

1: Initialization:
2: Set the initial input r∗ = max{rmini }i∈N , BU∗ = 0

and x(0) = [x
(0)
i ]i∈N , where x

(0)
i ∈ [0, xmaxi ], τ ← 1,

a predefined ascending factor δ, and a precision threshold
ε� 1;

3: for r = max{rmini }i∈N ; r ≤ rmax; r = r + δ do
4: 0← t
5: while (τ > ε) do
6: t← t+ 1
7: for all i ∈ N do
8: i decides its investing strategy x(t)i by (29);
9: end for

10: τ ←
∑

i∈N ‖x
(t)
i −x

(t−1)
i ‖∑

i∈N ‖x
(t−1)
i ‖

,

11: end while
12: Obtain the borrower vehicle’s profit BU(x(t), r) by

(30).
13: if BU∗ < BU(x(t), r) then
14: r∗ ← r; BU∗ ← BU(x(t), r); x∗ ← x(t)
15: end if
16: end for
17: Output: r∗, x∗, BU∗

cost reduction and failure avoidance for data interactions.
Specially, the proposed system satisfies the following security
requirements.

1) Decentralization and privacy protection: The
blockchain-based trading system enables vehicles to conduct
data-trading in a pure P2P manner without relying on a
globally trusted intermediary, thus the privacy protection is
guaranteed.

2) Account security: The proposed system also guarantees
the account security of vehicles by encrypted signature. Adver-
saries cannot open vehicles’ wallets without the corresponding
keys and certificates.

3) Publicly audit: Transactional data are publicly audited
and authenticated by all authorized aggregators such that
compromising all entities is impossible because of the over-
whelming cost.

4) Encrypted signature: The encrypted signature ensure
that no adversary can pose as a user or corrupt the network,
because the adversary cannot forge a signature of a vehicle or
gain control over the majority of system resources [32].

B. Simulation of IoV Scenario

We perform the simulation of IoV with a virtual map as
shown in Fig. 5. This virtual map consists of 200 cells × 200
cells. A cell is a grid in the map which represents a 50m ×
50m area in the actual map. The cells can be divided into
two groups: road cells in which vehicle nodes can exist, and
building cells in which vehicle nodes cannot exist. The road
cells are located per 10 cells in row and in column in the virtual
map, representing roads in the actual map. Vehicle nodes are
distributed in the road cells. All vehicle nodes move to their
neighboring road cells per unit-time, and change direction
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Fig. 5. Simulation in the virtual map.

only at the crossing. We consider the unit-time in our IoV
scenario is 5 seconds, thus the speed of each vehicle node
is 36 km/hour averagely. The probability of a vehicle node
changing its direction at the crossing is set to 20%. We define
that a communication area of a vehicle node as the area 10
cells × 10 cells from it.

In our scenario, a vehicle only executes debt-credit business
with vehicles in its communication areas. We call the set of ve-
hicles that can lend for a vehicle is the lender set of it. Because
of the mobility, a lender vehicle that enters the communication
area of the borrower vehicle will become a new member of
its lender set. The borrower vehicle will re-pricing if there are
new lender vehicles joining its communication areas.

We study the performance of proposed debt-credit pricing
schemes by simulations. To illustrate the impacts of different
parameters on the performance, we consider a group of N
vehicles providing loan services when the borrower vehicle
asks for loans. The default parameter values of the numerical
experiments are set as follows: η = 120, rmax = 30%, R =
20, w = 6, X = 200, N = 10. We assume that {xmaxi }i∈N
and {rmini }i∈N follow continuous uniform distributions with
parameters [40, 60] and [0.8%, 1%], respectively. Besides, we
evaluate the performance of the independent pricing scheme
and the uniform pricing scheme in the following.

C. Impact of Mobility and Competition

The mobility of vehicles frequently cause that the lender set
of a borrower vehicle changes, and further influences both the
pricing and lending processes. Since we adopt low-complex
Algorithm 2 under uniform pricing scheme, here we only
investigate the impact of mobility under independent pricing
scheme. Fig. 6 shows the dynamics of average lending rate
and loan amount over time. In the scenario of Fig. 6, new
lender vehicles join in the lender set of the borrower vehicle
one by one with an unit-time as time interval, the amount of
lender vehicles, i.e., N , increases from 8 to 12.

We observe from Fig. 6 that the average lending rate and
loan amount quickly becomes constant because the borrower
vehicle gets its optimal pricing strategies in which the Nash
equilibrium is reached. The participating of new lender vehicle
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Fig. 6. Impact brought by mobility of vehicles on loan amount and average
lending rate.
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Fig. 7. Comparison of independent pricing scheme with the scheme without
considering competition among lender vehicles.

will not decrease the pricing efficiency. Both average lending
rate and loan amount will convergence within 20 iterations.
Therefore, the proposed independent pricing scheme is effi-
cient and has good convergence even the lender set is changed.

In Fig. 7, we compare the independent pricing scheme
with another Stackelberg game based credit mechanism which
was used in [29]. In the compared algorithm, the competition
among lender vehicles is not considered. The unstable reward
is divided and equally distributed to each lender vehicle. Fig.
7 shows that our proposed pricing scheme outperforms the
compared schemes both in loan amount and average lending
rate. We also observe that the borrower vehicle can obtain
more loans with lower rate under independent pricing scheme
with the increase of N . With the compared scheme, the
borrower vehicle’s profit and loan amount are not influenced
by N .

Furthermore, we observe that the average lending rate is
decreased, and loan amount is increased, when new lender
vehicles join the loan business. This is because that more
lender vehicles can intensify competition among lender vehi-
cles. The number of lender vehicles represents the competition
level among lender vehicles. We then investigate the impacts
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Fig. 8. The profit and loan amount of borrower vehicle versus the number
of lender vehicles.

brought by the number of lender vehicles, i.e., N , on the profit
and expenditure of the borrower vehicle. We also investigate
the impacts of greedy factor η, and address the comparison
of the independent pricing scheme and the uniform pricing
scheme.

Fig. 8 shows the impact of N on the profit and loan
amount of the borrower vehicle. We observe that the profit
of the borrower vehicle and its total loan amount increase
with the increase of N . This is due to that more lender
vehicles will provide more funds for the borrower vehicle.
Therefore, the borrower vehicle can collect more loan when
there are more lender vehicles. We also find that both the profit
and loan amount of the borrower vehicle under independent
pricing scheme are larger than that under the uniform pricing
scheme. This is because under independent pricing scheme,
the strategy space of the borrower vehicle is much lager than
that of the uniform pricing scheme. The borrower vehicle
sets pricing strategies for each lender vehicle independently
thus can achieve better pricing strategies. Further, we notice
that both the profit and loan amount of the borrower vehicle
increase when the greedy factor η increases. This is because
when η increases, the borrower vehicle is inclined to obtain
more loans instead of to reduce the costs.

Fig. 9 shows the impact of N on the interest revenue
and lending rate of the lender vehicles. The lender vehicles’
interest revenue is also the expenditure of the borrower vehicle
for its loan. From Fig. 9, we observe that the average lending
rate of lender vehicles decreases with the increase of N . The
interest revenue of lender vehicles is also decreased with the
increase of N , except for the initial part. This is because that
with the increase of N , the competition among lender vehicles
also increases. As a result, the borrower vehicle can obtain
more funds without paying more interest to the investors.
Therefore, we can get the conclusion that the competition
intensifying among lender vehicles will increase the borrower
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Fig. 9. Interest revenue of borrower vehicle and average lending rate of
lender vehicles versus the number of lender vehicles.

vehicle’s profit and decrease its expenditure.
We also notice that the interest expenditure of the borrower

vehicle increases with N when N is no large than 7 from Fig.
9. This is due to the borrower vehicle set the maximum loan
rate, i.e., 30%, as its pricing in this situation. Therefore, its
interest expenditure increases with N until there are enough
lender vehicles in the loan market. We also find that when
there are enough lender vehicles in the loan market, the
borrower vehicle will set lower loan rate under the independent
pricing scheme than under the uniform pricing scheme. Thus,
we can conclude that under the independent pricing scheme
the borrower vehicle can obtain more loans from the lender
vehicles by paying less interest than under the uniform pricing
scheme.

We next investigate the impacts of minimum lending rate
of lender vehicles, i.e., the set of {rmini }i∈N , on the interest
revenue and average lending rate of lender vehicles. Fig. 10
shows the results. In Fig. 10, rmin = 0.01 means the set
of {rmini }i∈N follows an uniform distribution among [0.8%,
1%], rmin = 0.02 means the set of {rmini }i∈N follows an
uniform distribution among [1.8%, 2%]. From Fig. 10, we
can find that when lender vehicles increase their setting of
{rmini }i∈N , the interest revenue and average lending rate of
lender vehicles are also increased. This is due to the setting
of {rmini }i∈N can influence the lender vehicles’ utility. The
borrower vehicle must increase its pricing strategies to satisfy
the increased interest demand of lender vehicles.

D. Investigation on the impacts of the unstable reward

Then we investigate the impacts of unstable reward R on
the profit and expenditure of the borrower vehicle. The results
are shown in Fig. 11 and Fig. 12.

Fig. 11 shows the impact of R on the profit and loan amount
of the borrower vehicle. From Fig. 11, we find that with the
increase of R, the profit of the borrower vehicle and its total
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Fig. 10. The impact of lender vehicles’ minimum lending rate on the interest
revenue of borrower vehicle and average lending rate of lender vehicles.

loan amount decrease. This is contrary to our intuition, because
when the borrower vehicle increases the reward the investors
reduce their investments. This can be explained as that each
lender decides its investing strategy not only based on the
reward R, but also for its interest revenue. The increasing of
R intensify the competition of lender vehicles. This enables
the borrower vehicle to increase its profit by reducing its loan
rate for each lender, which reduces the investment willingness
of lender vehicles conversely.

Fig. 12 shows the impact of R on the interest revenue and
lending rate of the lender vehicles. We observe that under the
independent pricing scheme, both interest revenue and average
lending rate of lender vehicles decrease with the increase of
R. This is because that intensified competition makes the
borrower vehicle reduce its pricing strategies. We find that
although the borrower vehicle increase the reward cost, its total
expenditure is decreased due to the reduced interest rate. We
can conclude that under the independent pricing scheme, the
increasing of R will reduce the borrower vehicle’s expenditure.
We also find that under the uniform pricing scheme, the
borrower vehicle’s expenditure dose not decrease significantly.
This also shows that the borrower vehicle can save more costs
under the independent pricing scheme.

E. Investigation on the normalized loan rate of the borrower
vehicle

At last, we examine the impact of N and R on the normal-
ized loan rate of the borrower vehicle. The borrower vehicle’s
normalized loan rate is calculated by dividing the total cost,
including the interest cost and the unstable reward, by the total
loan amount. The results are shown in Fig. 13 and Fig. 14. Fig.
13 demonstrates the borrower vehicle’s normalized loan rate
versus N . We observe that the borrower vehicle’s normalized
loan rate decrease with the increase of N . This shows that the
borrower vehicle will gain funds with more affordable pricing
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Fig. 11. Interest revenue of borrower vehicle and average lending rate of
lender vehicles versus the unstable reward.
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Fig. 12. Interest revenue of borrower vehicle and average lending rate of
lender vehicles versus the unstable reward.

strategies when there are more competition among investors.
We also observe that the borrower vehicle’s normalized loan
rate is lower under the independent pricing scheme than that
under the uniform pricing scheme when there are enough
investors in the market. However, when there are not enough
investors, the borrower vehicle can gain lower normalized
loan rate under the uniform pricing scheme. This is because
when there are limited investors in the market, the borrower
vehicle is inclined to raise the interest rates for gaining more
loans. On the contrary, when there are enough investors, the
borrower vehicle is inclined to reduce the interest rates for
saving the costs. Therefore, we obtain the conclusion that
under the independent pricing scheme the borrower vehicle
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can set better pricing strategies to maximum its profit. Fig.
14 demonstrates the borrower vehicle’s normalized loan rate
versus R. We find that under independent pricing scheme, the
normalized loan rate of the borrower vehicle decrease with the
increase of R. However, under the uniform pricing scheme,
the increasing of R is not conducive to gain more profit for
the borrower vehicle. Therefore, we can conclude that there
is no significant advantage when the reward R is introduced
under the uniform pricing scheme. The introduction of R is
of benefit to the borrower vehicle only under the independent
pricing scheme.

VI. CONCLUSION

In this paper, we have proposed a secure, decentralized data-
trading and debt-credit system for IoV based on blockchain
technology. To address the efficiency challenges caused by
transaction confirmation delays and “cold-start” problem of
new users, we designed an debt-credit mechanism to encour-
age borrowing and lending among vehicles by a motivation-
based debt-credit mechanism. In this mechanism, the lender
vehicles act as the investors. we have adopt a two-stage Stack-
elberg game to jointly maximize the profits of the borrower
vehicle and the lender vehicles. We adopt independent pricing
scheme and uniform pricing scheme in the debt-credit mecha-
nism. We have conducted numerical simulations to evaluate
the performance of both independent and uniform pricing
schemes. The numerical results show the effectiveness and
efficiency of the proposed debt-credit mechanism. Specially,
with the independent pricing schemes, the borrower vehicle
can gain more loans with less interest cost. In future work,
we will further investigate other important problems in the
blockchain-based data-trading and debt-credit system, such

as the valuation of data, and the problem of cooperative
purchasing of data.
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