
2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

1

Cooperative and Distributed Computation
Offloading for Blockchain-Empowered Industrial

Internet of Things
Wuhui Chen, Member, IEEE , Zhen Zhang, Zicong Hong, Chuan Chen, Member, IEEE ,

Jiajing Wu, Member, IEEE , Sabita Maharjan, Member, IEEE ,
Zibin Zheng, Senior member, IEEE , Yan Zhang, Senior member, IEEE

Abstract—Offloading computation-intensive blockchain mining tasks to the edge servers is a promising solution for
blockchain-empowered Industrial Internet of Things (IIoT) because the computing capabilities in IIoT are usually limited, whereas the
blockchain mining tasks are computationally intensive. However, the computation offloading solutions for data processing tasks and for
blockchain mining tasks have been studied separately. Moreover, most of the existing solutions for offloading assume that all IIoT
devices can directly connect to the edge servers or cloud data centers. To address these issues, in this paper, we propose a multi-hop
cooperative and distributed computation offloading algorithm that considers the data processing tasks and the mining tasks together for
blockchain-empowered IIoT. First, we study the multi-hop computation offloading problem for both the data processing tasks and the
mining tasks to minimize the economic cost of IIoT devices. Second, we formulate the offloading problem as a potential game in which
the IIoT devices can make their decisions autonomously and prove the existence of Nash equilibrium for the game. Third, we design an
efficient distributed algorithm based on exchanging messages between IIoT devices to achieve the Nash equilibrium with low
computational complexity. Lastly, our experimental results demonstrate that our distributed algorithm scales well as the number of IIoT
devices increases and has the minimum system cost compared with other approaches.

Index Terms—Industrial IoT, computation offloading, edge computing, blockchain.

F

1 INTRODUCTION

The Industrial Internet of Things (IIoT) connects a large
scale of homogeneous and heterogeneous devices in in-
dustrial applications for economic benefits, efficiency im-
provements, and reduced human interference, in which IIoT
devices may need to interact with each other (e.g., data
exchanging, energy sharing, and computing resource trad-
ing) [1] [2]. However, because the IIoT devices (e.g., robots,
electric vehicles, and smart grid) may be owned by different
parties, their interactions inevitably involve different self-
interested parties [3] [4], which can lead to conflicts among
them. Thus, no single party can be really trusted, especially
in a large number of processing interactions among several
parties [5] [6] [7]. Therefore, it is important to build up trust
among different parties involved in IIoT.

Blockchain technologies, which allow IIoT to maintain
information transparency and build up trust among partic-
ipants via blockchain’s decentralized, tamper-proof, secure,
and traceable characteristics, can provide feasible solutions

Wuhui Chen, Zhen Zhang, Zicong Hong, Chuan Chen, Jiajing Wu
and Zibin Zheng were with School of Data and Computer Science, Sun
Yat-sen University, China. Email: {chenwuh, chenchuan, wujiajing, zhz-
ibin}@mail.sysu.edu.cn; {zhangzh297, hongzc}@mail2.sysu.edu.cn. (Corre-
sponding authors: Chuan Chen, Jiajing Wu)

Sabita Maharjan was with Simula Research Laboratory, University of Oslo,
Norway. Yan Zhang was with Department of Informatics, University of Oslo,
Norway. Email: {sabita, yanzhang}@ieee.org.

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

for trust enhancement, cost reduction, and failure avoidance
for IIoT [8] [9] [10]. However, using IIoT devices to support
the sophisticated security approach is challenging because
the mining tasks consume enormous computing power [11]
[12] [13]. The limited computing and storage capabilities
of IIoT devices limit their real-world applications. Inter-
estingly, many studies have been devoted to solving this
problem, among which the edge-computing model allowing
IIoT devices to offload the computation-intensive tasks (e.g.,
solving proof-of-work puzzles) to the edge servers (ESs) is a
promising solution for blockchain-empowered IIoT [14] [15]
[16].

The existing work [17] [18] on the computation of-
floading problem has achieved some positive results. How-
ever, they have not incorporated the following vital issues.
First, they do not consider the data processing tasks and
the mining tasks together in computation offloading. In-
stead, they only study the computation offloading problem
separately either for data processing tasks or for mining
tasks. However, in practice, these two types of tasks need
to be processed simultaneously in blockchain-empowered
IIoT. Therefore, the computation offloading solution must
consider the data processing tasks and the mining tasks
together to achieve resource optimization globally. Second,
most of these works assume that all IIoT devices can connect
to the ESs directly via wireless networks. However, in real-
world scenarios, some IIoT devices may experience poor
connectivity or may even fail to connect to any edge access
point (AP) directly because they are far away from the
APs. These devices then need to connect to well-connected

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

2

neighboring devices to offload tasks to the ESs, i.e., a multi-
hop computation offloading scenario, in which a task may
need to be transmitted by more than one device from the
original device to the ES. Therefore, some IIoT devices may
need to transmit their own tasks and tasks from neighboring
devices, making the computation offloading problem more
complex.

In this paper, we propose a multi-hop cooperative and
distributed computation offloading solution to consider the
data processing tasks and the mining tasks together for
blockchain-empowered IIoT. To address the first issue pre-
sented, we develop a game-theory-based distributed com-
putation offloading strategy to allow the data processing
tasks and the mining tasks to be offloaded to the ESs to
achieve global resource optimization. To address the second
issue presented, we formulate the offloading problem as
a multi-hop computation offloading game (MCOG) and
design a distributed algorithm by which the game can
quickly converge to a stable state, i.e., a Nash equilibrium
(NE). To the best of our knowledge, we are the first to
study the multi-hop computation offloading problem while
considering both the data processing tasks and the mining
tasks for blockchain-empowered IIoT.

Our main contributions are summarized as follows:

1) We firstly investigate the multi-hop computation of-
floading solution that addresses the data processing
tasks and the mining tasks together to minimize
the economic cost of IIoT devices for blockchain-
empowered IIoT. Then, we model the offloading
problem as a potential game.

2) We show the existence of NE for this offload-
ing game and develop a distributed algorithm to
quickly reach the NE point for the game. We also
propose an incentive model to motivate the IIoT de-
vices to transmit data cooperatively and introduce
a time-slot mechanism that enables the algorithm to
be put into practice well.

3) Lastly, we evaluate our distributed algorithm
through extensive experiments. The experimental
results demonstrate that our algorithm has the min-
imum system cost under different environments, is
more stable than other algorithms, and scales well
as the number of IIoT devices increases.

The remainder of this paper is organized as follows. We
discuss related work in Section 2. We describe the system
model in Section 3. We formulate the computation offload-
ing problem in Section 4 and describe the game in Section 5.
In Section 6, we design a distributed algorithm to reach the
NE for the game. Lastly, we evaluate the performance of our
algorithm in Section 7 and conclude the paper in Section 8.

2 RELATED WORK

The computation offloading problem for IoT has been
studied extensively [19] [20]. For example, Sun et al. [21]
proposed an efficient task scheduling scheme in the vehicu-
lar cloud by jointly considering the instability of resources,
the heterogeneity of vehicular computing capabilities, and
the interdependency of computing tasks. Mansouri et al.
[22] used a computation offloading game to model the

competition between IoT users who aim to maximize their
own quality of experience in a hierarchical fog-cloud com-
puting paradigm. Zheng et al. [23] investigated the prob-
lem of multiuser computation offloading for mobile cloud
computing under dynamic environments and proposed a
stochastic game-theory approach for dynamic computation
offloading. Guo et al. [24] proposed an iterative searching-
based task offloading scheme that jointly optimizes task
offloading, computational frequency scaling, and transmit-
power allocation. Zhang et al. [25] developed a multi-queue
model to explore the impact of offloading policies on the
performance of IoT devices with the computing resources
supported by an edge-computing server. Guo et al. [26]
studied the computation offloading problem in a mobile
edge-computing framework and proposed a two-tier game-
theory greedy offloading scheme as the solution. Chen et al.
[27] proposed a dynamic computation offloading algorithm
to solve the problem in a distributed manner for IIoT.

In addition, only a few recent studies have started to
study the multi-hop computation offloading problem. Com-
pared with the single-hop computation offloading problem,
the multi-hop computation offloading problem is more com-
plex because a task may be transmitted by more than one
rational intermediate node along the path towards the ES.
Therefore, this problem involves the choice of the trans-
mission path and incentives for the rational intermediate
nodes. Shatri et al. [28] proposed a distributed algorithm
on computation offloading in multi-hop networks that aims
to minimize the total network energy consumed. However,
the transmission path of each node is given in advance and
unique, and the entire routing topology is tree shaped. Hong
et al. [29] addressed the multi-hop computation offloading
problem by proposing a game-theory-based solution where
the transmission path can dynamically change. However,
the trust and security issues among different participants
remain challenging.

More recently, some works such as [17] [18] [30] have
studied the computation offloading problem for blockchain-
based IoT to solve the computation-intensive proof-of-work
puzzle. Chatzopoulos et al. [17] proposed a multilayer
computation offloading framework, FlopCoin, to integrate
a distributed incentive scheme and a distributed reputation
mechanism for mobile devices. Liu et al. [18] proposed a
novel mobile edge-computing-enabled wireless blockchain
framework where the computation-intensive mining tasks
can be offloaded to the nearby edge-computing nodes and
the cryptographic hashes of blocks can be cached in the
ESs. Luong et al. [14] developed an optimal auction based
on deep learning for edge-resource allocation for mobile
blockchain networks. Jiao et al. [31] proposed an auction-
based edge-computing resource allocation mechanism for
the edge-computing service provider to support the mo-
bile blockchain mining task. Xiong et al. [12] studied the
resource pricing between the cloud/fog providers and the
miners in a proof-of-work-based blockchain network us-
ing a game-theory approach. Li et al. [32] proposed a
double auction-based computing resource trading approach
for edge-cloud-assisted IoT. Moursa et al. [33] discussed
some Stackelberg game-based blockchain mining offload-
ing approaches in which the leader is the IoT device and
the followers are the ESs. However, most studies have

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

3

Edge ServerFiber link

Macrocell
LTE Direct

WiFi/WLAN

UEs

Access Point

Base Station

Blockchain

Added block

Blockchain:

Hash of i-1

Block i

Transactions
···

Hash of i

Block i+1

Transactions
···

···
···

Edge Server Services

Local Mobile IoT Network

Blockchain

Layer

Fig. 1: An illustration of the multi-hop computation offloading framework for blockchain-empowered IIoT.

not considered the data processing tasks and the mining
tasks together in computation offloading. In this paper, we
study the multi-hop computation offloading problem while
considering the data processing tasks and the mining tasks
together for blockchain-empowered IIoT.

3 SYSTEM MODEL

Fig. 1 shows the multi-hop computation offloading
framework for blockchain-empowered IIoT. The framework
consists of three main components, the IIoT devices, the
ESs, and the blockchain. The IIoT devices can communicate
with the neighbor peers constituting the local communities
via LTE Direct Technology [34]. Some of the peers are also
directly connected with the APs that provide access services
to the edge layer. We denote by B the set of APs. The
ESs provide sufficient computing and storage resources for
mining and consensus processing and data processing tasks.
Lastly, the blockchain is used to ensure high credibility and
security. In what follows we explain our model in detail.

First, we consider the IIoT network of n user equipments
(UEs). Let N denote the set of the UEs in the network. Each
UE i ∈ N performs a data processing task K1

i (s
1
i , T

1
i , l

1
i),

where s1
i is the input data size, T 1

i is the deadline, and
l1i is the number of CPU cycles needed to complete the
task. For convenience, we call this kind of task normal task.
Besides, we assume that some UEs can also execute a mining
task K0

i (s
0
i) if they decide to mine, where s0

i is a constant
denoting the size of the block being mined. In summary,
there are two types of task in the IIoT network: the normal
task and the mining task. We assume that the normal task
can be completed either locally or in the ES, and the mining
task can only be completed in the ES if its corresponding
UE decides to participate in the mining process. We use Oi
to denote the set of UE i’s tasks that are offloaded to the
ES. For UE i that performs normal tasks and mining tasks,
Oi = {K0

i ,K1
i } if it offloads its normal task and mining

task to the ES and Oi = {K0
i } if it only offloads its mining

task to the ES. For UE i that only performs normal tasks,
Oi = {K1

i } if it offloads its normal task to the ES and Oi = ∅
if it performs its normal task locally.

Second, in the multi-hop computation offloading frame-
work, an incentive model is required for incentivizing the

intermediate nodes to forward the tasks of other nodes and
incentivizing the ESs to provide computing resources. First,
the UEs that offload tasks via UE i should give certain
rewards to motivate UE i to help them transmit data.
Therefore, we assume that each UE i sets its forwarding
price pi based on its transmission rate. The UEs equally
share the expense pi if they all offload tasks via UE i.
Besides, the UEs that offload tasks to the ESs should pay
the ESs for providing computing resources. We suppose that
ps is the unit price of the computing resources in the ESs,
and the ESs are elastic servers that can provide sufficient
computing resources for UEs. Let the ESs allocate resources
f1 to support the normal tasks and f0 to support the mining
tasks, where f1 and f0 are both constants. According to
the description, some transactions may occur between UEs
and UEs or ESs. Hence, all UEs, APs, and ESs maintain a
blockchain to record these transactions and ensure them to
be tamper resistant and traceable.

Lastly, we divide the APs and UEs into many different
layers based on their communication distance in the net-
work. A UE that cannot communicate with any other UEs
and APs is not included in our model. We assume that the
layer where the APs locate in is layer 0. The UEs that can
communicate with the APs directly are located in layer 1,
and so forth. The maximal layer is denoted as Lmax. Each
UE i located in the layer j can choose one and only one UE
that it can communicate with directly from the layer j−1 as
its parent, denoted by p(i). Sometimes, there will be more
than one UEs to offload tasks via UE i; thus, each task set
Oj (j ∈ N is the UE which offloads its tasks to the ESs via
UE i) constitutes the relay set Ni of UE i. |Ni| is the size of
the set Ni, denoting the number of UEs that offload tasks
via UE i.

To describe the paper more clearly, we list the important
notations used in this paper in Table 1.

4 PROBLEM FORMULATION

4.1 Decision Description

We attempt to solve our problem using game theory
because it can leverage the intelligence and computing
capabilities of IIoT devices and ease the heavy burden of

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

4

TABLE 1: The notations used in this paper.

Notations Meanings

N The set of UEs in the network
n The number of UEs in N
K0

i The mining task
s0i The data size of the mining tasks
K1

i The normal task
s1i The data size of the normal tasks
T 1
i The deadline of the normal tasks

l1i The number of CPU cycles of the normal tasks
Oi The set of UE i’s tasks that are offloaded to the ES
si The total data size of the tasks in Oi

f1 The resources used to support normal tasks by the ESs
f0 The resources used to support mining tasks by the ESs
pe The unit price of energy
ps The unit price of the computing resources in the ESs
pi The forwarding price of UE i

Ni The relay set of UE i

D All possible decision profiles
Di The possible decisions of UE i

d A decision profile that includes the decisions of all UEs
d−i The decisions of all UEs except UE i

di The decision chosen by UE i

Ri(d) The expected mining reward of the UE i in d

V〈i,j〉 The total transmission rate of the link between i and j

v〈i,j〉(d) The transmission rate that the UEs receive when they
offload via UE i in d

C1
i (d) The cost of the normal task for UE i in d

C0
i (d) The cost of the mining task for UE i in d

Crel
i (d) The cost of helping others to transmit data in d

Ci(d) The total cost of UE i in d

computation and management at the center. To apply game
theory, we assume that the players of the game in our
model are all UEs, and each UE is bounded rational and can
make choice autonomously. We use decisions to describe the
choices made by each UE. The possible decisions of UE i are
defined as Di, and the decision chosen by UE i is expressed
as di = (ai, bi, ri), where di ∈ Di,

ai =

{
0, if UE i does not perform the mining task
1, if UE i offloads the mining task to the ES,

bi =

{
0, if UE i performs the normal task locally
1, if UE i offloads the normal task to the ES,

and ri = {p(i), p(p(i)), . . . , b}, where b ∈ B and p(b) = ES,
is a node sequence denoting the transmission path from UE
i to AP b. Then, AP b transmits the data belonging to the
task of UE i to the ES.

Then, the set of all possible decision profiles is D =
D1 × D2 × . . . × Dn and a decision profile that includes
the decisions of all UEs is d = {d1, d2, . . . , dn}, where
d ∈ D. Furthermore, the decisions of all UEs except UE i
are denoted by d−i.

4.2 Cost of the Normal Task

According to the description in Section 4.1, the normal
tasks can be performed locally or in the ESs. The cost of
these two situations are discussed as follows.

4.2.1 Local computing cost
In the case of local computation, the normal task of each

UE is completed using its own computing resources. For
uniform units, we can convert energy into tokens. Thus, we
can denote the unit price of energy by pe. With the above
notations, the cost of the normal task computed locally by
UE i can be expressed as

Clocali = σl1i p
e, (1)

where σ is the consumed energy per CPU cycle when the
onboard computing resources of UE i are used to compute
the normal task and can be measured by the approach in
[35].

4.2.2 Computation offloading cost
In a multi-hop computation offloading framework, some

UEs need to offload their normal tasks to the ESs with
assistance from other UEs. Thus, the transmission rate of
the link between the sender i and the receiver j is defined
as V〈i,j〉. We denote by v〈i,j〉(d) the transmission rate that
the UEs can get when they offload tasks via UE i in the
decision profile d. As in [36], v〈i,j〉(d) depends on the total
transmission rate V〈i,j〉 and |Ni(d)| that denotes the number
of UEs that offload tasks via UE i, and v〈i,j〉(d) can thus be
defined as

v〈i,j〉(d) =
V〈i,j〉
|Ni(d)|

. (2)

Based on the incentive model, UE i that decides to offload
needs to pay the intermediate UEs in ri for helping it
transmit data and the ES for providing computing resources.
Thus, in the case of computation offloading, the total cost for
computing the normal task in the ES includes the reward to
the intermediate nodes, the payment to the ES, and the cost
for sending data. Thus, each UE i that offloads its normal
task to the ES should pay the ES an amount of A1

i = l1i p
s.

Besides, for sending data to the AP or to the intermediate
UE, UE i itself also consumes some energy. The transmission
power of UE i is denoted by wi. Therefore, the cost that the
normal task K1

i of UE i takes to reach and be processed in
the ES is

C1
i (d) =

∑
j∈ri

pj
|Nj(d)|

+A1
i +Wi(d,K1

i), (3)

where Wi(d,K1
i) =

s1i
v〈i,p(i)〉(d)wip

e is the cost for sending
the data belonging to the normal task. Similar to prior work
[22], [36], we do not consider the cost for returning the
results of normal tasks to original UEs because the size of
the result is much smaller than s1

i for many applications
such as face recognition.

4.3 Cost of the Mining Task
As mentioned earlier, the computing resources supported

by the ESs for the mining tasks of the UEs that decide to
mine are equal. Thus, the hash power of miner i is

αi(d) =
1

m(d)
, (4)

where m(d) is the number of miners (i.e., the number of
UEs that decide to mine) [31].

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

5

In a blockchain network, all miners compete with each
other to first complete the mining task and reach consensus
and then receive the reward accordingly [37]. The prob-
ability of becoming an orphaned block that is discarded
because of not reaching a consensus approximately follows
the following distribution: P(x) = 1 − e−λβ(x), where −λ
is a constant rate, x is the block size, and β(x) is a function
of x. We consider that the first miner that mines a block
and has its block reach consensus receives the reward of k
tokens. Hence, the expected mining reward of miner i can
be expressed as

Ri(d) = kαi(d)
(

1− P(s0
i)
)

=
R

m(d)
, (5)

where R = ke−λβ(s0i) is a constant.
Similar to the case of a normal task, the UE i that decides

to mine with the computing resources of the ES needs to pay
the server for consuming the computing resources. When
the UE i only offloads its mining task to the ES (i.e., when
ai = 1 and bi = 0), the cost of rewarding the intermediate
nodes in ri for relaying the data of its mining task should be
included in the cost function of the mining task. To express
the cost of the mining task for UE i in decision profile d, we
define an indicator function [36] for UE i

I(x, y) =

{
1, if x = y,

0, otherwise.
(6)

Each UE that decides to mine with the computing resources
of the ES should pay the ES an amount of A0 = f0ps. Thus,
the cost that the mining task K0

i of UE i takes to reach and
be processed in the ES is

C0
i (d) = I(bi, 0)

∑
j∈ri

pj
|Nj(d)|

+A0+Wi(d,K0
i)−Ri(d), (7)

where Wi(d,K0
i) =

s0i
v〈i,p(i)〉(d)wip

e is the cost for sending
the data belonging to the mining task. Here, we neglect the
cost for returning the results of mining tasks because the ES
just needs to transfer the mining reward to the account of
the according miner if it mines a block.

4.4 Cost of Relaying
We know that Oj is the set of UE j’s tasks the are

offloaded to the ES, and the total data size of the tasks in
Oj is sj = s0

jI(aj , 1) + s1
jI(bj , 1). v(i,p(i))(d) denotes the

transmission rate that the UEs receive when they offload via
UE i. Therefore, the time of relaying the task set Oj from UE
i to its parent p(i) is calculated as

T rel〈i,p(i)〉(d, Oj) =
sj

v〈i,p(i)〉(d)
. (8)

Then, the cost of relaying the task set Oj from UE i to its
parent p(i) is

Crel〈i,p(i)〉(d, Oj) =
sj

v〈i,p(i)〉(d)
wip

e. (9)

Except for its own tasks, UE i may help other UEs
to transmit data in the multi-hop computation offloading
framework. When helping others transmit data, UE i con-
sumes some energy and receives the forwarding reward pi

as its remuneration at the same time. Thus, the relay cost of
helping others to transmit data is

Creli (d) =
∑

Oj∈Ni(d)\Oi

Crel〈i,p(i)〉(d, Oj)− piη, (10)

where η = 1 if Ni(d) \Oi 6= ∅. Otherwise, η = 0.

4.5 Total Cost

The total cost of UE i in the decision profile d can be
defined as

Ci(d) = C0
i (d)I(ai, 1) + C1

i (d)I(bi, 1)

+ Clocali I(bi, 0) + Creli (d).
(11)

Then, the cost of the whole system can be defined as C(d) =∑
i∈N Ci(d).

4.6 Time Restriction

Based on our model, if the UEs offload more tasks via
the same path, they share lower cost, but this can result in
inefficiency and congestion. To address this issue, we set a
deadline for each normal task. To some extent, this setting
of deadlines can appropriately distribute the transmission
load on the nodes close to the APs, thus reducing the
transmission load on these nodes and keeping the load
within an acceptable range. The relay time of offloading the
normal task K1

i of UE i to the ES by the intermediate UEs in
ri is calculated as

T rel〈i,ES〉(d,K1
i) = s1

i

∑
j∈ri

|Nj(d)|
V〈j,p(j)〉

. (12)

The completion time of computing the normal task K1
i in

the ESs is

T comi (d,K1
i) =

l1i
f1
. (13)

The total time for computing the normal task K1
i in the

ES is the sum of relay time and completion time. There-
fore, if UE i chooses to offload its normal task to the ES,
the following condition must be satisfied: T rel〈i,ES〉(d,K1

i) +

T comi (d,K1
i) ≤ T 1

i . Otherwise, its normal task must be
executed locally.

5 GAME-THEORY APPROACH

In the multi-hop computation offloading framework, the
UEs are assumed to be selfish, so they will choose an optimal
decision based on their own interests after observing the
decisions of other UEs. Each UE aims to minimize its own
total cost, and competitively seeks for an optimal decision
d∗i that satisfies

min Ci(di,d−i),

s.t. di ∈ Di, T
rel
〈i,ES〉(d,K1

i) + T comi (d,K1
i) ≤ T 1

i .
(14)

Thus, we consider that the UEs play a noncooperative
game G : {N , (Di)i∈N , (Ci)i∈N }, in which the set of UEs
N denotes the set of players, Di are the possible decisions
of player i, and Ci is the cost function of player i.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

6

Definition 1. An NE of the MCOG is a decision profile d∗ that
satisfies

Ci(d
∗
i ,d
∗
−i) ≤ Ci(di,d∗−i), ∀di ∈ Di. (15)

Based on (15), we call d′i a better decision for UE i if
Ci(d

′
i,d−i) ≤ Ci(di,d−i), and d∗i the best response decision

to d−i if it satisfies the formula (14). Thus, we can deduce
that each UE i will play its best response decision to d−i
when the NE is reached. In this case, no UE can decrease
its total cost by finding a better decision and has incentives
to deviate unilaterally. In addition, in order to enable the
MCOG to converge to a stable state, we add a constraint:
only the UEs that do not help other UEs to transmit data
(i.e., Ni(d) \ Oi = ∅) can choose a better decision. These
UEs are called free players. Otherwise, they are called locked
players.

Before proving the existence of NE in the MCOG, we first
need to prove that the MCOG in our model is an exact
potential game. Because the decision of each player is a three
tuple, each player may have multiple states in the game.
Because of space limitations, we divide the state transitions
into three different types and give a case in each type to
complete the proof. The three types are described as follows:

• A UE i that changes the value of ai or bi but keeps
the transmission path ri unchanged (e.g., from di =
(0, 1, ri) to d′i = (1, 1, ri)).

• A UE i that keeps the value of ai and bi unchanged
but changes the transmission path ri (e.g., from di =
(0, 1, ri) to d′i = (0, 1, r′i)).

• A UE i that changes the value of ai or bi and the
transmission path ri at the same time (e.g., from di =
(0, 1, ri) to d′i = (1, 1, r′i)).

Definition 2. A strategic game {N , (Di)i∈N , (Ci)i∈N } is an
exact potential game if there exists an exact potential function
Φ : D→ R such that ∀i ∈ N,

Φ(d′i,d−i)− Φ(di,d−i) = Ci(d
′
i,d−i)− Ci(di,d−i). (16)

Theorem 1. The MCOG admits an exact potential function for
free UEs:

Φ(d) =
∑
i∈N

|Ni(d)|∑
j=1

pi
j
−
m(d)∑
i=1

(
R

i
−A0) +

n∑
i=1

A1
i I(bi, 1)

+
n∑
i=1

Clocali I(bi, 0) +
n∑
i=1

Qi(si, V〈i,p(i)〉),

(17)
where Qi = si

V〈i,p(i)〉
wip

e is a function of si and V〈i,p(i)〉.

Proof. Case 1: The UE i changes from its previous decision
di = (0, 1, ri) to a better decision d′i = (1, 1, ri). In this case,
the change of the total cost of UE i is

∆Ci = Ci(d
′
i,d−i)− Ci(di,d−i)

= A0 − R

m(d) + 1
+Qi(s

0
i , V〈i,p(i)〉),

and the change of the potential function is

∆Φ = Φ(d′i,d−i)− Φ(di,d−i)

= −
m(d′)∑
i=1

(
R

i
−A0) +

m(d)∑
i=1

(
R

i
−A0)

+
n∑
i=1

Qi(s
′
i, V〈i,p(i)〉)−Qi(si, V〈i,p(i)〉)

= A0 − R

m(d) + 1
+Qi(s

0
i , V〈i,p(i)〉).

Thus, Φ(d′i,d−i) − Φ(di,d−i) = Ci(d
′
i,d−i) − Ci(di,d−i)

holds in this case.
Case 2: The UE i changes from its previous decision di =

(0, 1, ri) to a better decision d′i = (0, 1, r′i). In this case, the
change of the total cost of UE i is

∆Ci = Ci(d
′
i,d−i)− Ci(di,d−i)

=
∑
j∈r′i

pj
|Nj(d′)|

−
∑
j∈ri

pj
|Nj(d)|

+Qi(s
1
i , V〈i,p′(i)〉)−Qi(s1

i , V〈i,p(i)〉),

and the change of the potential function is

∆Φ = Φ(d′i,d−i)− Φ(di,d−i)

=
∑
i∈N

|Ni(d
′)|∑

j=1

pi
j
−
∑
i∈N

|Ni(d)|∑
j=1

pi
j

+
n∑
i=1

Qi(si, V〈i,p′(i)〉)−
n∑
i=1

Qi(si, V〈i,p(i)〉)

=
∑
j∈r′i

pj
|Nj(d′)|

−
∑
j∈ri

pj
|Nj(d)|

+Qi(s
1
i , V〈i,p′(i)〉)−Qi(s1

i , V〈i,p(i)〉).

Thus, Φ(d′i,d−i) − Φ(di,d−i) = Ci(d
′
i,d−i) − Ci(di,d−i)

also holds in this case.
Case 3: The UE i changes from its previous decision di =

(0, 1, ri) to a better decision d′i = (1, 1, r′i). In this case, the
change of the total cost of UE i is

∆Ci = Ci(d
′
i,d−i)− Ci(di,d−i)

=
∑
j∈r′i

pj
|Nj(d′)|

−
∑
j∈ri

pj
|Nj(d)|

+Qi(s
′
i, V〈i,p′(i)〉)

−Qi(s1
i , V〈i,p(i)〉) +A0 − R

m(d) + 1
,

and the change of the potential function is

∆Φ = Φ(d′i,d−i)− Φ(di,d−i)

=
∑
i∈N

|Ni(d
′)|∑

j=1

pi
j
−
∑
i∈N

|Ni(d)|∑
j=1

pi
j
−
m(d′)∑
i=1

(
R

i
−A0)

+

m(d)∑
i=1

(
R

i
−A0) +

n∑
i=1

Qi(si, V〈i,p′(i)〉)

−
n∑
i=1

Qi(si, V〈i,p(i)〉)

=
∑
j∈r′i

pj
|Nj(d′)|

−
∑
j∈ri

pj
|Nj(d)|

+Qi(s
′
i, V〈i,p′(i)〉)

−Qi(s1
i , V〈i,p(i)〉) +A0 − R

m(d) + 1
.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

7

Algorithm 1: Distributed algorithm for the MCOG

1 Initialization:
2 each UE sets its decision di = (0, 0, ri) and state to

be free
3 for each i ∈ N do
4 set forwarding price pi based on its transmission

rate
5 Iteration:
6 iterate for each time slot t:
7 APs broadcast SM and CMs to the UEs of the next

layer
8 for each i ∈ N do
9 if i receives SM then

10 transmit SM and CMs to the next layer
11 if UE i is free then
12 compute its best response set Υi(t)
13 if Υi(t) 6= ∅ then
14 send DM to contend the chance of

update
15 if i receives PM from the controller then
16 choose a decision di(t) ∈ Υi(t) for

slot t
17 continue

18 keep di(t) = di(t− 1) for slot t

19 if the controller does not receive DM then
20 broadcast EM to all UEs
21 record all transactions taking place in the

network
22 for each i ∈ N do
23 if Ni(d(t)) \Oi = ∅ then
24 set UE i to be free

25 else
26 set UE i to be locked

27 until EM is got from the controller

Thus, Φ(d′i,d−i)−Φ(di,d−i) = Ci(d
′
i,d−i)−Ci(di,d−i)

also holds in this case. The proof for the other cases is similar
and straightforward, demonstrating that the MCOG is an
exact potential game. �

Theorem 2. The MCOG possesses a pure-strategy NE.

Proof. We have proven that the MCOG is an exact potential
game. Because each exact potential game admits a pure-
strategy NE [38], the MCOG possesses a pure-strategy NE,
which completes the proof of Theorem 2. �

6 DISTRIBUTED ALGORITHM

In this section, we propose a distributed computation
offloading algorithm shown in Algorithm 1, namely, the best
update (BU) algorithm, with which the MCOG can reach
an NE quickly. Besides, despite the existence of a controller
that coordinates the signals, the major computing tasks are
distributed.

6.1 Algorithm Design
Based on Theorem 1, because the MCOG is a potential

game, it must have finite improvement paths [38]. We can

controller

UE 1 UE 2

UE 3

Transmitting path

Communicating link

① Broadcast SM
⑤ Broadcast EM if

not receive DM

Fig. 2: The sequence of the messages sent in each time slot.

use this property to design our distributed algorithm. Before
the algorithm starts, each UE i needs to initialize its decision
and state and set the forwarding price pi based on its trans-
mission rate (Lines 2–4). Next, for the synchronization of
all UEs, we introduce a time-slot mechanism that enables the
algorithm to be put into practice smoothly. Before each time
slot begins, the controller broadcasts the starting message
(SM) to all UEs (Line 7). In each time slot t, the following
three steps are performed:

1) Message exchanging among UEs: To apply the BU
algorithm to the real-world scenarios, each UE needs to
send information about its transmission rate, forwarding
price, and the number |Ni(d)| to the UEs in the next layer
after getting SM (Lines 9–10). We call these information
congestion messages (CMs). After receiving enough CMs,
each free UE computes the best decisions of the next slot
based on the information, and each free UE needs to send its
decision message (DM) to the controller for unified control,
rather than directly updating their own decisions. The key
point of the algorithm is that there is one and only one
UE to change its decision in each time slot. Therefore, the
controller needs to select one UE to update its decision and
send a permit message (PM) to it. When no DM is received
within a specified period of time, the controller broadcasts
an ending message (EM) to all UEs, indicating that the NE
is reached in the BU algorithm (Lines 19–20). For the sake of
clarity, the sequence of the messages sent in each time slot
is described in Fig. 2.

2) Decision update (Lines 11–18): After receiving sufficient
CMs, each free UE i computes its best response decision set
with the formula as

Υi(t) ,
{
d∗i : d∗i satisfies (14) and

Ci
(
d∗i ,d−i(t− 1)

)
< Ci

(
di(t− 1),d−i(t− 1)

)}
.

Next, if UE i has at least one better decision to update (i.e.,
Υi(t) 6= ∅), it sends a DM to the controller to contend for
the update opportunity. Otherwise, UE i keeps its decision
unchanged, i.e., di(t) = di(t − 1). Then, the controller
randomly chooses a UE j that has sent a DM and sent a PM
to it to update its decision at time slot t. Thus, UE j selects
a decision from its best response decision set as its decision

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

8

at the next time slot, i.e., dj(t) ∈ Υj(t). As for the UEs that
have already sent CM to the controller but have not got the
PM, they keep their previous decisions, i.e., di(t) = di(t−1).

3) State update (Lines 22–26): At the end of each time slot
t, the state of each UE needs to be updated. IfNi(d(t))\Oi =
∅, UE i is set to be free. Otherwise, UE i is set to be locked.

Finally, each UE i pays the intermediate UEs in ri and the
ES based on its own decision. Then, all transactions occur-
ring in the network are recorded into blockchain blocks so
the transactional records cannot be tampered with (Line 21).

6.2 Performance Analysis

In this section, we analyze the performance of the NE in
the MCOG by giving the bound of Price of Anarchy (PoA),
which is a concept that measures the inefficiency of the NE
in game theory. It is defined as the ratio of the worst system
cost resulting from the NE in our game to the best system
cost of the optimal result. Our goal is to minimize the total
cost of the system, so a smaller system cost is desirable (i.e.,
a smaller PoA is desirable). In this paper, we consider the
sum of the cost of all UEs as the system cost, i.e., C(d) =∑
i∈N Ci(d). Thus, the PoA in our game can be calculated

as

PoA =
maxd∗

∑
i∈N Ci(d

∗)

mind∈D
∑
i∈N Ci(d)

.

Theorem 3. The multi-hop cooperative computation offloading
game has a PoA that satisfies

PoA ≤
∑
i∈∆ Clocali +

∑
i∈N\∆Ki∑

i∈N Mi
,

whereKi = max{Clocali , Ĉi,max}+maxd∈DCreli (d) andMi =
min{Clocali , Ĉi,min}+ mind∈DC

rel
i (d).

Proof. We set d∗ as an arbitrary NE of the MCOG. To
compute the worst system cost, we first consider the set
of the UEs located in the outermost layers as ∆. For the
UE i in ∆, Ci(d∗i ,d

∗
−i) ≤ Clocali must be satisfied, and

the worst case for the UEs in ∆ is that they all compute
their normal tasks using local computing resources and
undertake no mining task. Because the UEs in the outermost
layers have no relay tasks, i.e., they are free, they can change
their decisions based on their own interests. As such, if
Ci(d

∗
i ,d
∗
−i) > Clocali , UE i will change its decision to

compute normal tasks locally and undertake no mining task,
which contradicts the assumption that the decision profile
d∗ is an NE of the game. For the UEs not in ∆, they may
be locked and help other UEs to transmit tasks. To compute
the worst system cost, we suppose that each UE i not in ∆
is locked and chooses the worst decision that makes its total
cost maximal. Let Ĉi,max , maxd∈D{C1

i (d)+C0
i (d)}. Thus,

maxd∗
∑
i∈N\∆ Ci(d

∗) ≤
∑
i∈N\∆ max{Clocali , Ĉi,max} +

maxd∈DCreli (d).
Next, we compute the lower bound of the optimal system

cost in the game. We consider d̃ ∈ D as the optimal decision
in the game. If Clocali ≤ Ci(d) for ∀d ∈ D and i ∈ N ,
then the best decision of UE i is to compute normal tasks
locally and undertake no mining tasks, i.e., Ci(d̃) = Clocali .
Otherwise, UE i chooses a transmitting path ri for of-
floading the computation to the ESs for lower total cost.

In the best case, the NE in our game produces the mini-
mum system cost. Let Ĉi,min , mind∈D{C1

i (d) + C0
i (d)}.

Thus, mind∈D
∑
i∈N Ci(d) ≤

∑
i∈N min{Clocali , Ĉi,min} +

mind∈DC
rel
i (d).

Therefore, according to the upper bound of the system
cost resulting from the worst NE and the lower bound of
the system cost resulting from the optimal decision, we can
conclude that

PoA =
maxd∗

∑
i∈N Ci(d

∗)

mind∈D
∑
i∈N Ci(d)

≤
∑
i∈∆ Clocali + maxd∗

∑
i∈N\∆ Ci(d

∗)∑
i∈N min{Clocali , Ĉi,min}+ mind∈DCreli (d)

≤
∑
i∈∆ Clocali +

∑
i∈N\∆Ki∑

i∈N Mi
.

�

7 NUMERICAL RESULTS

7.1 Evaluation Metrics and Baseline Algorithms

In this section, we evaluate the performance of the pro-
posed BU algorithm via extensive experiments. First, for the
sake of performance evaluation, we consider three metrics
as follows:

• System cost: The system cost is calculated as C(d) =∑
i∈N Ci(d). It is used as a metric to evaluate the

performance of an algorithm. The smaller the system
cost, the better the performance of the algorithm.

• Number of iterations (or time slots): The number of
iterations is used to indicate the convergence rate and
computational complexity of an algorithm. A smaller
number of iterations means that the algorithm con-
verges faster.

• Message exchanging volume: The message exchanging
volume is used to evaluate the communication loads
of an algorithm. The less the message exchanging
volume, the lower the communication loads of the
algorithm, which means a better performance of the
algorithm.

Second, we consider two other computation offloading
algorithms for comparison:

• Synchronous update (SU) algorithm: The SU algo-
rithm optimizes each UE’s cost considering both the
normal tasks and the mining tasks, but this algorithm
is unstable and may fail to converge in some cases.
Differing from the SU algorithm adopted in [39], in
this work, we let the free UEs that have at least
one better decision and locate in the same layer
update their decisions simultaneously and perform
the updates from layer 1 to layer Lmax. This process
constitutes an iteration of the SU algorithm.

• Random algorithm: In the random algorithm, each
UE randomly makes a decision that satisfies time
restriction. Thus, the UEs in the random algorithm
are irrational. In the experiments, we run the random
algorithm 1000 times and take the average results for
comparison.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

9

0 100 200 300 400 500
x(m)

0

100

200

300

400

500

y(
m

)

Fig. 3: The map showing the final decisions of the UEs.

0 50 100 150 200
number of UEs

0

50

100

150

200

nu
m

be
r

of
 it

er
at

io
ns

Fig. 4: The number of iterations vs. the number of UEs.

7.2 Simulation Settings
Here, we consider a scenario where 6 APs and 50 UEs are

randomly distributed in a region of 500 m× 500 m. Each UE
and AP can communicate with each other within the range
of 80 m. We suppose the channel bandwidth between UEs
and APs or UEs is B = 20 MHz [18], while the data trans-
mission power wi is set to be 0.5 W. The Gaussian white
noise $ = −120 dBm and the channel gain Gn = d−γn,a,
where dn,a is the distance between the UEs and APs or UEs,
and γ = 4 is the path loss factor [40]. The data transmission
rate from each AP to the ESs is set to be 1 Mb/s. For the
computing resources supported by the ESs, we set f0 = 100
GHz and f1 = 1000 GHz. The computational capacity of
UEs follows a uniform distribution on [1.5, 2] GH.

For the mining tasks, the data size is set to be s0
i = 5

KB [18]. The first miner whose block achieves a consensus
receives k = 30 tokens. Each miner should pay ps = 0.025
tokens/Gcycle to the ESs. For the normal tasks, the data
size s1

i and the number of CPU cycles l1i are uniformly
distributed in the range [200, 400] KB and [20, 40] Gcycles,
respectively. Besides, T 1

i is set to the completion time of
computing the normal task locally. Each UE i sets its for-
warding price pi = 0.002V tokens, where V is the average
transmission rate of UE i. Lastly, we consider pe = 0.1
tokens/J [18].

7.3 Decision Simulation and Computational Complex-
ity

With above simulation settings, the MCOG can achieve
an NE by performing the BU algorithm. Fig. 3 simulates the
final decision of each UE when the NE is achieved in the
BU algorithm. The dashed lines in Fig. 3 denote the trans-
mission paths chosen by each UE. The red points denote the

0 10 20 30 40 50 60
time slot

40

60

80

100

120

sy
st

em
 o

ve
rh

ea
d

BU algorithm
SU algorithm

(a)

0 20 40 60
time slot

50

60

70

80

90

100

110

120

sy
st

em
 o

ve
rh

ea
d

BU algorithm
SU algorithm

(b)

Fig. 5: (a): Dynamics of the system cost over time slot in
the case where the SU algorithm converges; (b): Dynamics
of the system cost over time slot in the case where the SU
algorithm does not converge.

APs in the region. The pink squares denote the UEs whose
decisions are di = (0, 0, ri), the blue circles denote the UEs
whose decisions are di = (0, 1, ri), the orange triangles
denote the UEs whose decisions are di = (1, 0, ri), and the
blue-green diamonds denote the UEs whose decisions are
di = (1, 1, ri). Eventually, each UE plays the best response
decision based on its own interests.

Then, we can use the number of iterations to show the
computational complexity of the BU algorithm. Thus, in Fig.
4, we plot the number of iterations vs. the number of UEs.
We run this experiment with n = 20, 40, 60, . . . , 180 UEs
and 6 APs. The results in Fig. 4 indicate that the number
of iterations increases almost linearly with the number of
UEs, demonstrating that the BU algorithm has relatively
high efficiency.

7.4 Convergence Analysis

To demonstrate the convergence of the BU algorithm
and the SU algorithm, we plot the dynamics of the system
overhead over time slot in Fig. 5.

Fig. 5 shows that the system cost of the BU algorithm
finally becomes constant because the system reaches to a
stable point where no UEs can reduce their cost by changing
their decisions unilaterally, i.e., the NE of the game, indi-
cating that the BU algorithm has good convergence. In the
SU algorithm, the free UEs in the same layer update their
decisions simultaneously. In this manner, the cost functions
of the free UEs cannot be mapped into the potential func-
tion, which is important for the property of the finite-time

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

10

30 60 90 120

number of UEs

0

20

40

60

80

100

120

nu
m

be
r

of
 c

on
ve

rg
en

ce
BU algorihtm SU algorithm

Fig. 6: The average number of success-
ful convergences of the BU algorithm
and the SU algorithm per 100 experi-
ments.

SM CM DM PM EM

message of BU message of SU

SM CM DM PM EM SM CM DM PM EM SM CM DM PM EM

Fig. 7: The comparison of the message
exchanging volume in the BU algorithm
and that in the SU algorithm.

0 50 100 150
time slot

50

100

150

200

sy
st

em
 o

ve
rh

ea
d

X: 106
Y: 72.86

X: 127
Y: 71.08

1st

2nd 3rd 4th

Fig. 8: The BU algorithm adapts to the
varying topology.

1st 2nd 3rd 4th
topological change

0

20%

40%

60%

80%

100%

ra
tio

ratio of iterations ratio of system cost

Fig. 9: An illustration of the universal-
ity of the phenomenon in Fig. 8.

10 15 20 25 30 35
mining reward

60

80

100

120

140

sy
st

em
 c

os
t

BU algorithm
SU algorithm(40)
random algorithm

Fig. 10: The system cost vs. the mining
reward.

15 20 25 30 35 40
mining reward

5

10

15

20

25

nu
m

be
r

of
 m

in
er

BU algorithm
SU algorithm(40)
random algorithm

Fig. 11: The number of miners vs. the
mining reward.

30 40 50 60 70 80
number of UEs

50

100

150

200

sy
st

em
 c

os
t

BU algorithm
SU algorithm(30)
SU algorithm(40)
SU algorithm(50)
random algorithm

Fig. 12: The system cost vs. the number
of UEs.

100 200 300 400
data size of normal task

60

80

100

120

sy
st

em
 c

os
t

BU algorithm
SU algorithm(30)
SU algorithm(40)
SU algorithm(50)
random algorithm

Fig. 13: The system cost vs. the data
size of the normal tasks.

20 25 30 35 40
CPU cycles of normal task

60

80

100

120

140

160

180

sy
st

em
 c

os
t

BU algorithm
SU algorithm(30)
SU algorithm(40)
SU algorithm(50)
random algorithm

Fig. 14: The system cost vs. the number
of CPU cycles of the normal tasks.

convergence of an iterated game towards an NE, leading to
the fact that the SU algorithm may not converge as shown
in Fig. 5(b).

Lastly, in order to further verify the convergence of the BU
algorithm and the SU algorithm, the average successful con-
vergence times of the BU algorithm and the SU algorithm
per 100 experiments are recorded in Fig. 6. The BU algo-
rithm always converges in the experiments, demonstrating
that it has good convergence, while the average successful
convergence times of the SU algorithm gradually decrease
with an increased number of UEs because the mutual effects
of decision updates become more and more serious.

7.5 Message Exchanging Volume
During the running of the BU algorithm and the SU

algorithm, five kinds of messages are required to coordinate
the decision updates of the UEs. We compare the exchanging
volume of the SM, CM, DM, PM, and EM in the BU algo-
rithm and the SU algorithm, respectively, and the results

are recorded in Fig. 7. The height of each bar in Fig. 7 is
100%, the blue part in each bar is the proportion of the
message exchanging volume of the BU algorithm, and the
yellow part in each bar is the proportion of the message
exchanging volume of the SU algorithm. Fig. 7 shows that
the exchanging volume of the SM in the BU algorithm and
that in the SU algorithm are equal, and so is the exchanging
volume of the EM. In contrast, the exchanging volume of the
other three kinds of messages in the BU algorithm is much
less than that in the SU algorithm. Moreover, as the number
of UEs increases, the SU algorithm requires more and more
message exchanging than the BU algorithm.

In summary, the results in Fig. 7 demonstrate that the
BU algorithm requires much less message exchanging com-
pared with the SU algorithm and can keep a higher perfor-
mance at the same time.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

11

7.6 Topology-Varying Adaption
In a practical mobile scenario, the topology of the network

changes over time with the movement of the UEs, so we
need to run the proposed BU algorithm continuously. In
order to evaluate the performance of our proposed algo-
rithm when the topology changes, we conduct a simulation
to imitate how our algorithm adapts to the varying topology.

We firstly execute the BU algorithm to achieve the NE of
the game and then allow the UEs to move freely at a speed
of 5 m/s for 2 s. The movement of the UEs may make the
decisions of some UEs no longer optimal, so we run the BU
algorithm again. We repeat this process for multiple times,
and the system cost in this period is recorded in Fig. 8. Fig.
8 shows that the MCOG reaches to the NE point by running
the BU algorithm after 106 time slots. Then, the system
cost increases to 72.8 because of the first topology change,
which is much smaller than the initial system cost of 190.
By running the BU algorithm, the MCOG reachs to the NE
point again after 21 time slots, which is much faster than the
first time. Moreover, Fig. 8 shows that the other three times
topology change obtain similar results. In addition, the SU
algorithm may not converge as we explained in Section 7.4,
i.e., the existence of NE cannot be guaranteed. Therefore,
the performance of the SU algorithm in the topology change
scenario is incomparable to that of the BU algorithm, and we
only study the topology-varying adaption for BU algorithm
in this part.

In order to show the universality of the phenomenon in
Fig. 8, we conducted the simulation in Fig. 8 repeatedly, and
the average results are recorded in Fig. 9. In Fig. 9, the red
bars denote the ratios of the number of iterations needed to
achieve NE after the 1st, 2nd, 3rd, and 4th topology changes
to that needed to achieve NE before changing the topology.
The green bars denote the ratios of system cost at NE after
the 1st, 2nd, 3rd, and 4th topology changes to that at NE
before changing the topology. The figure shows that the
heights of the red bars are about 30% and the heights of
the green bars are about 100%. These results show that after
changing the topology of the network, the BU algorithm can
quickly reach to the NE again, and the change of the system
cost at NE is very small.

In conclusion, the BU algorithm can adapt to the vary-
ing topology quickly and maintain high performance in a
practical mobile scenario.

7.7 Effects of Parameter Settings
Next, we compare the system cost of each algorithm

with different mining rewards. Fig. 4 shows that when the
number of UEs is set as 50, the number of iterations of the
BU algorithm is around 40. Then, we also iterate the SU
algorithm 40 times for comparison in this experiment. In
Fig. 11, the number of miners in the BU and SU algorithms
increases as the mining reward increases, and the tendencies
of their curves are consistent. This relationship is because
the UEs are rational in the BU algorithm and SU algorithm.
In this manner, a greater mining reward allows more UEs
to benefit from the mining tasks. Besides, as shown in
Fig. 10, the system cost of the BU algorithm and the SU
algorithm are much less than that of the random algorithm.
The reason for this is that the UEs in the random algorithm

4 5 6 7 8 9
number of Raspberry Pis

5

10

15

20

25

sy
st

em
 c

os
t

BU algorithm
SU algorithm
random algorithm

Fig. 15: The system cost vs. the number of Raspberry Pis.

are irrational, implying that the number of miners remains
almost constant, as shown in Fig. 11. In Fig. 10, the BU algo-
rithm averagely saves 36.34% of the system cost compared
with the random algorithm, and 10.46% compared with
the SU algorithm. It demonstrates that the BU algorithm
has the lowest system cost because of the more rational
improvement on the decision of each UE, and can effectively
optimize the number of miners at the same time.

In some scenarios, the UEs in IIoT may execute different
normal tasks. Therefore, we also investigate the effects of
the number of UEs, the data size of the normal tasks, and
the number of CPU cycles of the normal tasks on the system
cost of each algorithm. Considering the SU algorithm may
not converge, we iterate it 30, 40, and 50 times as compara-
tive experiments. Here, the number of iterations of the BU
algorithm is around 40. Then, we repeat each algorithm 1000
times and record the mean system cost. Fig. 12 shows that
as the number of UEs increases, the system cost of each
algorithm increases. While in the proposed BU algorithm,
because of the game between different UEs, the increasing
of the system cost with the increasing of the number of UEs
is slowest. Next, Fig. 13 shows that the system cost of each
algorithm increases with the increasing of the data size of
the normal tasks. This relationship is because transmitting
larger normal tasks costs more energy. Lastly, Fig. 14 shows
that the system cost increases when the number of CPU
cycles of the normal tasks increases. This relationship is
because of a higher cost of computing normal tasks with the
limited onboard computing resources of UEs. In Figs. 12, 13,
and 14, the BU algorithm averagely saves 33.98%, 34.42%,
and 36.79% of the system cost compared with the random
algorithm, respectively, and 11.84%, 6.32%, and 6.65% of the
system cost compared with the SU algorithm, respectively.
It demonstrates that the proposed BU algorithm possesses
the minimum system cost compared with that of other
algorithms because the BU algorithm can ensure that the
value of the function Φ(d) reduces continually in each time
slot, while the SU algorithm and the random algorithm
cannot.

7.8 Experiments in Real-World Scenarios
To demonstrate the practicality and applicability of the

proposed framework and algorithm, we implement a proto-
type system for computation offloading that considers both
the normal tasks and the mining tasks. The experiments
use self-assembled hosts with Intel(R) Core(TM) i7-6800K
CPU as the ESs and a set of Raspberry Pi3 B as the devices

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

12

TABLE 2: Specifications of the devices used in the experiments

Devices
Used

Self-assembled host Raspberry Pi3 B

CPU Intel(R) Core(TM)
i7-6800K CPU

ARMv7 Processor
rev 4 (v7l)

Cores 6 Physical Cores 4 Physical Cores
Clock
Speed 4 GHz 1.2 GHz

RAM 112 GB 0.75 GB
Storage 1TB 16GB

Operating
System

Linux version
4.15.0-36-generic

Linux version
4.14.71-v7+

Price $ 2000 $ 36

in blockchain-empowered IIoT. The details are shown in
Table 2. Each device is equipped with a wireless network
adapter, allowing them to communicate with each other.
We also install the Geth client on each device to build the
private blockchain. Then, the transactions are recorded in
the blockchain by using the Ethereum interface.

In our real experiments, each Pi performs a face recog-
nition task with an input data size of approximately 120
KB and builds a private blockchain using Geth to record
the transactions. We record the execution time of the face
recognition tasks on each Pi and then estimate the energy
consumption based on the approach in [35]. The ESs create
an account for each miner and perform mining tasks using
Geth. The experimental results are shown in Fig. 15, in
which when the number of Raspberry Pis increases, the
system cost of each algorithm increases. While in the pro-
posed BU algorithm, because of the game between differ-
ent Raspberry Pis, the increasing of the system cost with
the increasing of the number of Raspberry Pis is slowest.
Moreover, the system cost in the proposed BU algorithm
under different numbers of Raspberry Pis remains smallest.
In Fig. 15, the BU algorithm averagely saves 35.56% of
the system cost compared with the random algorithm, and
5.73% compared with the SU algorithm. It demonstrates
that our proposed BU algorithm is the most stable and can
obtain the lowest system cost, indicating that our proposed
algorithm can also work well in real-world scenarios.

8 CONCLUSION

In this paper, we have studied the multi-hop computation
offloading problem that considers the normal tasks and the
mining tasks together for blockchain-empowered IIoT. We
formulate the offloading problem as a MCOG and prove
the existence of NE for the game. Then, we designed a
high-efficiency distributed algorithm based on the finite im-
provement property of the MCOG. Lastly, our experimental
results demonstrated that the proposed BU algorithm can
converge to a stable state (i.e., an NE of the MCOG) quickly,
and its number of iterations increases almost linearly with
an increased number of UEs. The proposed BU algorithm
require much less message exchanging comparing with
other algorithms and can adapt to the varying topology
quickly. Moreover, the performance of the proposed BU
algorithm rises steadily with increasing mining rewards and
can effectively optimize the number of miners at the same
time. Furthermore, when the number of UEs, the data size

of the normal tasks, and the number of CPU cycles of the
normal tasks increase, the proposed BU algorithm remains
the lowest system cost compared with other approaches.
This result shows that our algorithm scales well as the
number of UEs increases and possesses a relatively high
efficiency under various parameter settings.

ACKNOWLEDGMENT

The work described in this paper was supported
by the National Key Research and Development
Plan(2018YFB1003800), the National Natural Science
Foundation of China (61802450), the Guangdong Province
Universities and Colleges Pearl River Scholar Funded
Scheme (2016), the Natural Science Foundation of
Guangdong (2018A030313005), and the Program for
Guangdong Introducing Innovative and Entrepreneurial
Teams (2017ZT07X355).

REFERENCES

[1] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog com-
puting in industrial internet of things and industry 4.0,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4674–4682,
Oct 2018.

[2] K. R. Choo, S. Gritzalis, and J. H. Park, “Cryptographic solutions
for industrial internet-of-things: Research challenges and oppor-
tunities,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8,
pp. 3567–3569, Aug 2018.

[3] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang,
“Creditcoin: A privacy-preserving blockchain-based incentive an-
nouncement network for communications of smart vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 7, pp.
2204–2220, July 2018.

[4] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1184–1195, April 2018.

[5] C. Qiu, F. R. Yu, H. Yao, C. Jiang, F. Xu, and C. Zhao, “Blockchain-
based software-defined industrial internet of things: A dueling
deep q-learning approach,” IEEE Internet of Things Journal, pp. 1–1,
2018.

[6] Z. Su, Y. Wang, Q. Xu, M. Fei, Y. Tian, and N. Zhang, “A secure
charging scheme for electric vehicles with smart communities in
energy blockchain,” IEEE Internet of Things Journal, pp. 1–1, 2018.

[7] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain for
large-scale internet of things data storage and protection,” IEEE
Transactions on Services Computing, pp. 1–1, 2018.

[8] K. Christidis and M. Devetsikiotis, “Blockchains and smart con-
tracts for the internet of things,” IEEE Access, vol. 4, pp. 2292–2303,
2016.

[9] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the internet of things,” IEEE
Internet of Things Journal, pp. 1–1, 2018.

[10] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8,
pp. 3690–3700, Aug 2018.

[11] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain,
“Enabling localized peer-to-peer electricity trading among plug-
in hybrid electric vehicles using consortium blockchains,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3154–3164,
Dec 2017.

[12] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When
mobile blockchain meets edge computing,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 33–39, August 2018.

[13] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung,
“Blockchain-based decentralized trust management in vehicular
networks,” IEEE Internet of Things Journal, pp. 1–1, 2018.

[14] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction
for edge computing resource management in mobile blockchain
networks: A deep learning approach,” in 2018 IEEE International
Conference on Communications, May, pp. 1–6, 2018.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2918296, IEEE Internet of
Things Journal

13

[15] M. Li, L. Zhu, and X. Lin, “Efficient and privacy-preserving
carpooling using blockchain-assisted vehicular fog computing,”
IEEE Internet of Things Journal, pp. 1–1, 2018.

[16] C. Xu, K. Wang, and M. Guo, “Intelligent resource management
in blockchain-based cloud datacenters,” IEEE Cloud Computing,
vol. 4, no. 6, pp. 50–59,2017.

[17] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “Flopcoin: A
cryptocurrency for computation offloading,” IEEE Transactions on
Mobile Computing, vol. 17, no. 5, pp. 1062–1075, 2018.

[18] M. Liu, R. Yu, Y. Teng, V. C. Leung, and M. Song, “Computation
offloading and content caching in wireless blockchain networks
with mobile edge computing,” IEEE Transactions on Vehicular Tech-
nology, 2018.

[19] S. M. Y. Dai, D. Xu and Y. Zhang, “Joint computation offloading
and user association in multi-task mobile edge computing,” IEEE
Transactions on Vehicular Technology, 2018.

[20] S. L. G. Qiao and Y. Zhang, “Online learning and optimization for
computation offloading in d2d edge computing and networks,”
ACM/Springer Mobile Networks and Applications, 2018.

[21] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen,
“Cooperative task scheduling for computation offloading in ve-
hicular cloud,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 11 049–11 061, Nov 2018.

[22] H. Shah-Mansouri and V. W. Wong, “Hierarchical fog-cloud com-
puting for iot systems: A computation offloading game,” IEEE
Internet of Things Journal, 2018.

[23] J. Zheng, Y. Cai, Y. Wu, and X. S. Shen, “Dynamic computation of-
floading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Transactions on Mobile Computing, pp. 1–1, 2018.

[24] H. Guo, J. Zhang, J. Liu, and H. Zhang, “Energy-aware compu-
tation offloading and transmit power allocation in ultra-dense iot
networks,” IEEE Internet of Things Journal, pp. 1–1, 2018.

[25] Y. Zhang, B. Feng, W. Quan, G. Li, H. Zhou, and H. Zhang,
“Theoretical analysis on edge computation offloading policies for
iot devices,” IEEE Internet of Things Journal, pp. 1–1, 2018.

[26] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge com-
putation offloading for ultra-dense iot networks,” IEEE Internet of
Things Journal, pp. 1–1, 2018.

[27] Y. Chen, N. Zhang, Y. Zhang, and X. Chen, “Dynamic computation
offloading in edge computing for internet of things,” IEEE Internet
of Things Journal, pp. 1–1, 2018.

[28] H. Al-Shatri, S. Müller, and A. Klein, “Distributed algorithm for
energy efficient multi-hop computation offloading,” in 2016 IEEE
International Conference on Communications (ICC), May 2016.

[29] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Qos-aware
cooperative computation offloading for robot swarms in cloud
robotics,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2019.

[30] Y. Zhu, G. Zheng, L. Wang, K. Wong, and L. Zhao, “Content
placement in cache-enabled sub-6 ghz and millimeter-wave multi-
antenna dense small cell networks,” IEEE Transactions on Wireless
Communications, vol. 17, no. 5, pp. 2843–2856, May 2018.

[31] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maxi-
mization auction in edge computing resource allocation for mobile
blockchain,” in IEEE International Conference on Communications,
pp. 1–6, 2018.

[32] Z. Li, Z. Yang, and S. Xie, “Computing resource trading for edge-
cloud-assisted internet of things,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2019.

[33] J. Moura and D. Hutchison, “Game theory for multi-access edge
computing: Survey, use cases, and future trends,” IEEE Communi-
cations Surveys Tutorials, pp. 1–1, 2018.

[34] U. N. Kar and D. K. Sanyal, “An overview of device-to-
device communication in cellular networks,” ICT Express, p.
S2405959517301467, 2017.

[35] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile applica-
tion execution: Taming resource-poor mobile devices with cloud
clones,” in IEEE INFOCOM, pp. 2716–2720, 2012.

[36] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile
computation offloading,” in IEEE INFOCOM, pp. 1–9, 2017.

[37] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Optimal
pricing-based edge computing resource management in mobile
blockchain,” in 2018 IEEE International Conference on Communica-
tions, pp. 1–6, 2018.

[38] D. Monderer and L. S. Shapley, “Potential games,” Games and
Economic Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[39] W. Saad, Q. Zhu, T. Basar, Z. Han, and A. Hjorungnes, “Hierarchi-
cal network formation games in the uplink of multi-hop wireless
networks,” in IEEE GLOBECOM 2009, pp. 1–6, 2009.

[40] T. S. Rappaport et al., Wireless communications: principles and prac-
tice. prentice hall PTR New Jersey, 1996.

