
A Detailed and Real-time Performance Monitoring Framework
for Blockchain Systems

Peilin Zheng
Sun Yat-sen University, China
zhengpl3@mail2.sysu.edu.cn

Zibin Zheng
Sun Yat-sen University, China
zhzibin@mail.sysu.edu.cn

Xiapu Luo
The Hong Kong Polytechnic

University, China
csxluo@comp.polyu.edu.hk

Xiangping Chen
Sun Yat-sen University, China
chenxp8@mail.sysu.edu.cn

Xuanzhe Liu
Peking University, China
liuxuanzhe@pku.edu.cn

ABSTRACT
Blockchain systems, with the characteristics of decentralization,
irreversibility and traceability, have attracted a lot of attentions
recently. However, the current performance of blockchain is poor,
which becomes a major constraint of its applications. Additionally,
different blockchain systems lack standard performance monitoring
approach which can automatically adapt to different systems and
provide detailed and real-time performance information. To solve
this problem, we propose overall performance metrics and detailed
performance metrics for the users to know the exact performance in
different stages of the blockchain. Then we propose a performance
monitoring framework with a log-based method. It has advantages
of lower overhead, more details, and better scalability than the pre-
vious performance monitoring approaches. Finally we implement
the framework to monitor four well-known blockchain systems,
using a set of 1,000 open-source smart contracts. The experimental
results show that our framework can make detailed and real-time
performance monitoring of blockchain systems. We also provide
some suggestions for the future development of blockchain systems.

KEYWORDS
Blockchain, Smart Contract, Performance, Monitoring
ACM Reference Format:
Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe
Liu. 2018. A Detailed and Real-time Performance Monitoring Framework
for Blockchain Systems. In ICSE-SEIP ’18: 40th International Conference
on Software Engineering: Software Engineering in Practice Track, May 27-
June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3183519.3183546

1 INTRODUCTION
Blockchain, originated from Bitcoin [26], is a continuously grow-
ing list of records, called blocks, which are linked and secured
using cryptography. A blockchain is maintained by peers in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183546

Figure 1: An Example of Smart Contract Invocation on
Blockchain

P2P transaction network, where peers record transactions in a pe-
riod of time and packaged them together into a block to join the
blockchain. Blockchain is decentralized, tamper-resistant, and trace-
able. On blockchain, a smart contract is an event-driven promise
defined by the programming language, which no body controls
and therefore everybody can trust. As shown in Figure 1, a smart
contract on blockchain can be invoked in a way of sending a "trans-
action" (named invoking transaction which includes the address
of the contract, the calling function, and the parameters) to the
validating peers. After that, the smart contract will be executed
independently by every peer [7]. Finally different peers reach the
consensus through a consensus protocol and save the execution
result into the blockchain. Since blockchain-based smart contracts
can enhance trustworthy, decrease the cost of central trusted au-
thority, and have wide applications (e.g., finance [17], supply chain
[20], IoT [13] etc.), they have gained a lot of attentions from both
industry and academic in recent years [21, 35].

Performance is one of the most important issues of various
blockchain systems. Current blockchain systems (e.g., Ethereum
[7], Parity, Fabric [8], etc.) suffer from various performance prob-
lems, especially when executing complex smart contracts. Real-
time performance monitoring of blockchain systems is urgently
needed. We divide the performance of blockchain systems into
overall performance and detailed performance. Overall performance

https://doi.org/10.1145/3183519.3183546
https://doi.org/10.1145/3183519.3183546

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu

(e.g., throughput, latency) can be employed to select the optimal
blockchain system to fit the actual application scenario so that it is
valuable for users. The detailed performance provides more detailed
information of the whole process which is valuable for blockchain
developers to know the performance bottlenecks.

There are some studies [16, 32] focusing on the overall perfor-
mance evaluation of blockchain systems. However, overall metrics
cannot reflect the detailed performance in different process stages as
shown in Figure 1. Detailed performance information of blockchain
is urgently required and metrics are lacking. Moreover, the over-
head of real-time monitoring as well as scalability of the monitoring
framework need to be comprehensively investigated. Thus the chal-
lenges of performance monitoring for blockchain systems can be
summed up as what to monitor and how to monitor.

To attack the above challenges, we propose a detailed and real-
time performance monitoring framework for blockchain systems.
The framework gets the performance data in real time by log anal-
ysis and daemon process. The proposed monitoring framework has
the following advantages: (1) Low overhead: The framework has
negligible performance impact on the running blockchain systems,
and thus is suitable for real-time monitoring. Our experiments show
that the overhead is 95% less than the previous RPC-based monitor-
ing method; (2)Detailed monitoring: Via log analysis, we can get
more detailed information about different stages of the blockchain
system. Our framework can monitor 12 different performance met-
rics; and (3) Scalability: The framework can be easily extended to
monitor new peers or blockchain systems.

The contribution of this paper is three-fold:

• This paper proposes various overall and detailed perfor-
mance metrics for different blockchain systems.
• A scalable framework is proposed for detailed and real-time
monitoring of blockchain systems, which has much lower
overhead compared with previous approaches.
• We collect and classify 1,000 open-source smart contracts to
conduct comprehensive performance monitoring and evalu-
ation of 4 well-known blockchain systems. The experimen-
tal result shows the feasibility of our proposed framework.
Moreover, we come out with some suggestions for the fur-
ther blockchain development.

The rest of this paper is organized as follows. Section 2 introduces
the related work. Section 3 describes the basic concepts. Section 4
introduce the performance metrics. Section 5 details the framework
of performance monitoring. Section 6 shows the experiments of our
framework on different blockchain systems and Section 7 concludes
the paper.

2 RELATEDWORK
Nakamoto described how to build up a peer-to-peer decentral-
ized electronic cash system called Bitcoin without any credit basis
in 2008 [26], which has been proved to be stable but inefficient
[15]. In 2013, Vitalik et al. developed Ethereum [7], which has big
progress compared with the Bitcoin blockchain. Ethereum has a
turing-complete virtual machine to execute smart contracts. In 2015,
IBM developed Fabric, executing smart contracts (chaincode) in
the docker [8]. In 2016, Onchain developed Antshare blockchain,

using smart contracts to record the transferring of the digital as-
set. Antshare blockchain is reputed to handle 10,000 transactions
per second. Qtum presented a smart-contract framework that aims
for sociotechnical application suitability [14]. Different blockchain
systems use different consensus protocols, code execution engines,
and so on. Vukolic compares the execution efficiency of different
consensus protocol including PoS and PoW [31]. Idelberger et al.
proposed logic-based smart contracts for blockchain systems [18].

Blockchain-based smart contracts have a wide range of appli-
cations. McCorry et al. proposed an open board voting system
which maximizes the privacy of the voters [24]. Christidis et al.
investigated the application and limitations of smart contracts for
Internet-of-Things, indicating that the performance and efficiency
is too low to execute the contracts on IoT [13]. The applications
above use the blockchain-based smart contract for its decentral-
ized, tamper-resistant, and traceable features. However, all of them
have the same problem of long execution time and low efficiency,
which makes it still unable to replace the centralized solution. Per-
formance is one of the key factors restricting the application of
blockchain-based smart contacts.

There are some studies about black-box monitoring for dis-
tributed systems, such as Project5 [3], WAP5 [27] and the Sherlock
system [5]. But thesemonitoring approaches cannot be used directly
for blockchain systems. Dinh et al. proposed Blockbench [16], an
evaluation framework for analyzing private blockchains. It serves
as a fair means of comparison for different private blockchains.
Weber et al. provided an analysis of the issues that can negatively
impact commit times in permissionless proof-of-work blockchains,
and provided a way to limit the effect [32]. Kalodner et al. present
BlockSci [19], an software platform for blockchain analysis focus
on the transaction data. Luu et al. proposed four kinds of vulner-
abilities of smart contracts and a tool to detect the vulnerabilities
based on symbolic execution [22]. Chen et al. proposed a method
to detect Ponzi schemes on public blockchain [12]. Bhargavan et
al. proposed a formal verification approach of smart contracts [6].
Marino et al. set some standards for altering and undoing smart
contracts when the contracts are being attacked [23]. Chen et al.
designed a tool to optimize the smart contracts on Ethereum [10].

These previous research did not provide detailed performance
monitoring in different process stages. Moreover, the RPC method
used by previous research could not meet the requirement of low
overhead and has poor scalability. In this paper, we propose a
detailed and real-time performance monitoring framework for
blockchain systems to solve above problems.

3 BASIC CONCEPTS
This section introduces the basic principles and concepts of blockchain,
smart contract, and common blockchain systems.

3.1 Blockchain
Blockchain was firstly proposed as a kind of data structure for
peer-to-peer Bitcoin payments [26]. In a P2P transaction network,
each peer called miner packaged the transactions into blocks and
then joint them to a chain-like data structure named blockchain.
Each peer has a local blockchain and they keep it the same via
the consensus protocol. Thus, in a narrow sense, blockchain is a

A Detailed and Real-time Performance Monitoring Framework for Blockchain SystemsICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 2: Data Structure of Blockchain

decentralized database which is kept by all the peers in the P2P
transaction network. On the other hand, blockchain can also be
considered as a distributed ledger kept by peers [29]. Important
concepts of blockchain include:
• Transaction: A transaction represents an operation of the
ledger, such as transferringmoney. Taking Bitcoin blockchain
as an example, if someone wants to send Bitcoin to others,
the owner of the money is represented by a address gener-
ated by his public key. The owner makes a signature through
the corresponding private key. Then the owner package the
signature with other information (e.g., value, receiver) into
a data structure named transaction. After that, the transac-
tion is broadcast to the network. Every peer that receives
the transaction will validate the transaction through the
signature in it.
• Block: Block is used to record a set of transactions occurred
in a period of time. Each block consists of two parts: the
header and the content. The block header records the basic
information (e.g., hash, parent hash, Merkle-tree root, times-
tamp, difficulty, nonce, etc.). The block content records the
number of transactions and the transaction details.
• Chain: Chain includes a number of blocks which are linked
together. For example, in Bitcoin blockchain, each block is
identified with a hash value. Every block is generated after
the previous one so that they record the hash of the previous
block, called parent hash. Therefore, with the parent hash
recorded in the block header, we can search a sequence from
the last block to the first block. The chain-like structure is
similar to the list structure, as shown in Figure 2.
• Consensus: Consensus protocol is a peer-to-peer protocol
that is run by the peers/miners to secure and maintain the
blockchain. In a P2P transaction network, due to the high
network latency, the order of transactions received by each
peer may not be exactly the same. Therefore, the blockchain
system needs to design a protocol to reach consensus on the
transaction order. For example, Bitcoin blockchain uses PoW
(Proof of Work) and Fabric blockchain uses PBFT (Practical
Byzantine Fault Tolerance [9]) as the consensus protocol.

3.2 Smart Contract
Smart contract, proposed by Nick Szabo [30], is a promise that is
defined by digital form. A blockchain-based smart contract can be

considered as an event-driven program which stores its state on a
distributed ledger. This program can be run by peers who maintain
the ledger independently. Benefiting from the characteristics of
blockchain, blockchain-based smart contracts [33] are decentralized,
tamper-resistant, traceable, and distributed-executable, which make
it reliable to transfer assets on the blockchain. Taking Hyperledger
Fabric [4, 8] blockchain (v0.6) as an example, the key concepts of
smart contracts are introduced as follows.

• Chaincode: Chaincode, or so-called contract code is the
code stored on the blockchain with the world state. The
chaincode can be read and executed in the virtual machine
(e.g. Ethereum Virtual Machine) or container (e.g. docker).
The chaincode is compiled by the owner and then put into
a transaction to deploy onto peers in the P2P transaction
network. Chaincode defines the main execution logic of the
smart contract.
• World State: World state is a key-value database. Smart
contracts use this database to store related states of trans-
actions and the information of each account (e.g., balance,
number of tokens, etc.). Most blockchain systems put the
world state into a data structure of tree to record the root
onto the blockchain (e.g., Merkle Patricia Tree in Ethereum,
Bucket Tree in Fabric).
• Ledger: Ledger consists of the blockchain and the world
state. Blockchain records the history of the ledger and the
world state records the balance of each account in the ledger.
• Validating Peer: Validating peers are core peers in the
blockchain P2P transaction network that maintain the ledger,
participate in the consensus, validate transactions, execute
the chaincode, and update the state.
• Non-validating Peer: Non-validating peers only respond
to REST requests from clients. Non-validating peers do not
commit the block but propagate the transaction to the vali-
dating peers after basic validation.
• Deployment: After a smart contract is signed by every par-
ticipant, it will be included to a transaction in the format
of creation code of the chaincode. Then the transaction will
be propagated, validated and committed in the blockchain.
When the transaction is confirmed, the chaincode will be
stored on the blockchain with the world state. This action is
called the deployment of the smart contract.
• Invoke: Invoke refers to the action that sending a trans-
action including the information of the function and corre-
sponding parameters of a smart contract.When peers receive
the transaction, they will read the chaincode and execute
the specified function independently.

3.3 Common Blockchain Systems
There are many blockchain systems. The most common ones are
introduced as follows:

• Ethereum is themost popular blockchain systemwith smart
contracts. It is a public blockchainwith a built-in fully fledged
turing-complete programming language that can be used
to create "contracts" that can be used to encode arbitrary
state transition functions, allowing users to create any of

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu

the decentralized systems. It uses the consensus protocol of
PoW (Proof of Work).
• Hyperledger Fabric is a blockchain framework implemen-
tation. It allows components, such as consensus and mem-
bership services, to be plug-and-play. Hyperledger Fabric
leverages container technology to host smart contracts called
"chaincode" [8].
• Parity is another version of client of Ethereum [2]. It pro-
vides another consensus protocol called PoA (Proof of Au-
thority). With this consensus protocol, developers can build
up private chains (or so called consortium blockchains) with
higher throughput than the PoW chains of Ethereum.
• CITA is called Cryptape Inter-enterprise Trust Automation
[34]. It adopts a microservice architecture to boost perfor-
mance of the network. With the microservice architecture,
a logical node can be scaled to a cluster of servers. Con-
sensus and transaction execution are decoupled as separate
microservices. The consensus service is only responsible for
transaction ordering, which can finish independently before
transaction execution.

In summary, there are many blockchain systems supporting
blockchain-based smart contracts. Performance is one of the key
factors restricting the application of these blockchain systems, es-
pecially when running complex smart contracts. In the next section,
we will propose the performance metrics for blockchain systems.

4 PERFORMANCE METRICS
In this section, we will explain why we consider Gas (the uniform
metric for resources consumption in Ethereum) as an unsuitable
metric by its one-sidedness and floating. Then, we will propose
metrics for performance monitoring of blockchain systems. We
divide the metrics into two parts to meet different requirements:
the overall metrics for the users and the detailed metrics for the
developers.

4.1 Gas: an Unsuitable Metric
In Ethereum and many blockchain systems which use EVM as
their execution engine of smart contracts [33], developers define
"Gas" as the fundamental network cost unit. Gas is paid by Ether
through the exchange rate called gasprice. Gas does not exist outside
of the internal Ethereum computation engine; its price is set by
the transaction and miners are free to ignore transactions whose
gasprice is too low. In public blockchain such as Ethereum, miners
used Gas to evaluate the performance and resource consumption
of a smart contract. However, our research found that Gas is an
unsuitable metric for performance monitoring for the following
reasons:

A. One-sidedness
As Figure 1 shows, there are several stages in the process of a

transaction on the blockchain. Gas is a cost unit only used in the
execution stage and sometimes the state update stage. But Gas does
not reflect the cost of other stages (e.g., validating, block committing,
and so on). In other words, if a miner wants to charge someone
that sends him a smart contract transaction, with the metric of Gas,
he can only estimate the cost in the execution, without any other

Figure 3: Overall Metrics Corresponding to the System

metrics to cover the fees during the RPC-response or transaction
validating stage.

It is unfair for the blockchain miners because some malicious
users could send lots of invalid transactions to them to consume
their computing resources in validating the transactions without
any cost. Therefore, Gas is one-sided as a metric.

B. Inaccurate
Gas is paid for by Ether exclusively, but the exchange rate called

gasprice between Gas and Ether is floating case by case. Thus it
could be floating for the blockchain miners to charge the users by
Gas. Chen et al. conducted an experiment to execute EVM opera-
tions and then recorded the time consumptions [11]. Their results
show that the latest Gas costs are not proportional to the consump-
tions of CPU resources. For example, DIV (division) has the same
Gas of SDIV (signed division), but the execution time needed by
DIV is about 23% of that needed by SDIV. Therefore, using Gas to
evaluate the consumed computing resources of smart contracts is
inaccurate.

4.2 Overall Performance Metrics of Blockchain
For the users or managers of the blockchain, it is important for
them to know an overview of the performance of the blockchain.
Combining the data of the blockchain and the resources consump-
tion, we propose the overall performance metrics for blockchain as
shown in Figure 3.

Transactions Per Second
Different blockchain systems show different speeds for deploy-

ing, invoking, and executing smart contracts. We need to monitor
the throughput in a period of time, which is the number of transac-
tions per second.

During a period of time from ti to tj , Transactions Per Second of
peeru can be calculated by the following equation, (we abbreviate
transaction as Tx, the same below):

TPSu =
Count

(
Tx in

(
ti , tj
))

tj − ti
(txs/s). (1)

When considering the throughput of N peers, we can take the
average by:

TPS =

∑
u TPSu
N

(txs/s). (2)

A Detailed and Real-time Performance Monitoring Framework for Blockchain SystemsICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Average Response Delay
There is a gap between the time when transaction is firstly sent

into the network and the time when it is confirmed (e.g., be commit-
ted in a block and the block is accepted by all peers). If users deploy
a smart contract on the blockchain, users have to wait some time
until the contract is confirmed, and then the contract can respond
for other operation. In other words, compared with the centralized
contracts or softwares, smart contracts on blockchain improve the
reliability at the expense of increased response delay, and hence
we need to monitor this expense.

During a period of time from ti to tj , the action of each trans-
action firstly sent to the peer is marked as Txinput and the action
when Tx is confirmed is marked as Txconf irmed . Average Response
Delay of peeru can be found by the following equation:

ARDu =
∑
Tx (tTx conf irmed − tTx input)

Count
(
Tx in

(
ti , tj
)) (txs/s). (3)

When we consider to the response delay of all smart contracts, we
can take the average by:

ARD =

∑
u ARDu
N

(txs/s). (4)

Transactions Per CPU
During the execution of smart contracts, it consumes a lot of

CPU resources. The degree of CPU consumption is determined
by the business logic implemented in the contract. The contract
with encryption, loops will consume a lot of CPU resources. The
action of committing the block, computing the hash of the world
state also consumes a lot of CPU resources. Note that different
blockchain systems are running on the peers equipped with differ-
ent CPUs. Thus we need a metric to monitor the utilization of the
CPU when running the smart contracts, and hence we propose it
as Transactions Per CPU.

During a period of time from ti to tj , Transactions Per CPU of
peeru can be computed by the following equation:

TPCu =
Count

(
Tx in

(
ti , tj
))

∫ tj
ti

F ∗CPU (t)
(txs/(GHz · s)), (5)

where F is the frequency of a single CPU core and CPU(t) is the
CPU usage of the blockchain program at t. When considering the
whole utilization of CPUs in the network, we can take the average
by:

TPC =

∑
u TPCu
N

(txs/(GHz · s)). (6)

Transactions Per Memory Second
During the contract execution, the virtual machine/docker will

load the relevant account data from the world state and open up
some arrays. These operations will consume the memory. Thus we
propose Transactions Per Memory Second to represent the utilization
of the memory by the following equation:

TPMSu =
Count

(
Tx in

(
ti , tj
))

∫ tj
ti

RMEM (t) +VMEM (t)
(txs/(MB · s)), (7)

where RMEM(t) is the real memory used by the blockchain program
at t and VMEM(t) is the virtual memory of it. When considering

the whole the network, we can take the average by:

TPMS =

∑
u TPMSu

N
(txs/(MB · s)). (8)

Transactions Per Disk I/O
The blockchain program has separate storage space in the hard

disk for storing the data including the world state. Moreover it
consumes the resources of I/O while maintaining the blockchain
(e.g., block committing, contract execution). Similar to the TPMS,
we propose Transactions Per Disk I/O to represent the utilization of
I/O by the following equation:

TPDIOu =
Count

(
Tx in

(
ti , tj
))

∫ tj
ti

DISKR (t) + DISKW (t)
(txs/kilobytes), (9)

where DISKR(t) is the size of the data read from the disk in the
second t and DISKW(t) is the size of the data written into the disk.
To give an overview of the disks of all the peers, we take the average
by:

TPDIO =

∑
u TPDIOu

N
(txs/kilobytes). (10)

Transactions Per Network Data
Different blockchain systems use different consensus protocol

to keep every peer in the same state. The consensus protocol will
transfer the data of blocks or appending transactions in the network,
thus it consumes the network flow. During a period of time from
ti to tj , we propose Transactions Per Network Data to monitor this
consumption of network flow by the following equation:

TPNDu =
Count

(
Tx in

(
ti , tj
))

∫ tj
ti

UPLOAD (t) + DOWNLOAD (t)
(txs/kilobytes),

(11)
where UPLOAD(t) is the size of upstream in the network at t and
DOWNLOAD(t) is the size of downstream. Considering the whole
network flow, we can take the average by:

TPND =

∑
u TPNDu

N
(txs/kilobytes). (12)

4.3 Detailed Performance Metrics of
Blockchain

As shown in the Figure 1, we divide transaction process into several
subprocesses. For the users of the blockchain, it is enough for them
to know the overall performance by the metrics we have proposed
in the above subsection. However, for developers of the blockchain,
it is essential to know what is going on in the whole blockchain.
Moreover, they need to know how the performance is in each stage.
So we propose the metrics corresponding to each important stage
of the process, as Figure 4 shows.

Peer Discovery Rate
In public blockchain, a peer may change the peers which are

connected to it because of the block height or the QoS. In private
blockchain or permissioned blockchain, although the connections
in the network are stable in most of time, there are still some peers
to be joined or removed in some special case. In the process of peer
discovery, we use Peer Discovery Rate to monitor the speed that

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu

Figure 4: Detailed Metrics Corresponding to the Stages of
Process

peers are added into the network by the following equation:

PDRu =
Pu

MAX (tpeer added) −MIN (tpeer ponд)
(peers/s), (13)

where Pu is the number of the peers connected to peer u, tpeer added
denotes the timestamp when a new peer is added to u (so the maxi-
mum of tpeer added denotes the time when the last peer is added),
tpeer ponд denotes the timestamp when a new peer responds to the
ping from u (so the minimum of tpeer ponд denotes the time when
the first peer get into the discovery process). Considering to the
whole network, we can take the average by:

PDR =

∑
u PDRu
N

(peers/s). (14)

RPC Response Rate
Most of the blockchain systems use RPC-API as their interactive

means with the user. Therefore when we consider the limit of the
transactions, we should not only focus on the limit of the execution,
but also focus on the external interfaces. During a period of time
from ti to tj , RPC Response Rate of peeru can be computed by the
following equation:

RRRu =
Count

(
RPC in

(
ti , tj
))

tj − ti
(resps/s), (15)

where RPC is an RPC response from peeru at the second t. We can
take the average to know the whole system by:

RRR =

∑
u RRRu
N

(resps/s). (16)

Transaction Propagating Rate
When a transaction is sent to a peer, before it is mined in a

block, it would be propagated (or so-called promoted) to other
peers [25]. Hence the limit of the transaction propagating might

restrict the performance of the blockchain system. We propose
Transaction Propagating Rate to see how transaction is promoted
by the following equation:

TPRu =
∑
t TxPromotedu (t)

tj − ti
(txs/s), (17)

where TxPromotedu (t) is the number of transactions promoted from
peeru at the second t. We can also take the average by:

TPR =

∑
u TPRu
N

(txs/s). (18)

Contract Execution Time
In blockchain systems, the execution time depends on the busi-

ness logic implemented by the smart contracts.We proposeContract
Execution Time to see how transaction executed by the following
equation:

CETu =
∑
Tx (tTx EXEDONE − tTx EXESTART)

Count
(
Tx in

(
ti , tj
)) (s/tx), (19)

where tTx EXESTART denotes the time when the transaction ex-
ecution is started and tTx EXEDONE denotes the time when the
transaction execution is finished. We can also take the average by:

CET =

∑
u CETu
N

(s/tx). (20)

State Updating Time
In Ethereum, after executing the contract , the world state is

changed. Then state will be updated with pending changes [1].
Therefore we propose State Updating Time by the following equa-
tion:

SUTu =
∑
Tx (tTx STAT EDONE − tTx EXEDONE)

Count
(
Tx in

(
ti , tj
)) (s/tx), (21)

where tTx EXEDONE denotes the time when the transaction exe-
cution is finished and tTx STAT EDONE denotes the time when the
state updating is finished. We can also take the average by:

SUT =

∑
u SUTu
N

(s/tx). (22)

Consensus-Cost Time
Although blockchain systems always use different consensus

protocol, we can regard them as the layer of consensus. In this layer,
the main function is to package the transactions with the results
into the block then propagate it to other peers to be confirmed.
Hence we consider the time from when the transaction is firstly
processed to when the block including the transaction is confirmed
as the Consensus-cost Time by the following equation:

CCTu =
∑
Tx (tTx conf irmed −MAXblock (tTx EXEDONE))

Count
(
Tx in

(
ti , tj
)) (s/tx),

(23)
where tTx conf irmed denotes the time when the transaction is
confirmed and MAXblock i (tTx EXEDONE) denotes the max value
of timestamp of the state updating finished of the transaction in
the same block. In other words, MAXblock i (tTx EXEDONE) is the
timestamp of the execution finishing of the last transaction in the
same block as transaction Tx. We can also take the average to know
the whole system by:

CCT =

∑
u CCTu
N

(s/tx). (24)

A Detailed and Real-time Performance Monitoring Framework for Blockchain SystemsICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 5: Performance Monitoring Framework

5 FRAMEWORK OF PERFORMANCE
MONITORING

In this section, we first give an overview of our monitoring frame-
work for the blockchain systems in 5.1. Then we will detail the
log-based method and the traditional RPC method of blockchain
monitoring in 5.2.

5.1 Overview
Figure 5 shows the performance monitoring framework. It uses a
low coupling architecture to make it efficient and low-overhead.
Next we will introduce every part of it.
• Validating Peer is the specific object of the blockchain
monitoring. It participates in the process of maintaining
the blockchain. Since it is the underlying object of the con-
tract execution, we focus on its performance to speculate on
the performance of the entire blockchain system.
• Log Parser/Analyzer is a terminal corresponding to each
validating peer. In this part, we create a daemon process to
collect and parse the logs printed by the validating peer. We
also implement the hardware resource monitoring in this
part. The main goal of this part is to collect the data about
the blockchain and hardware consumption (e.g., count of
transactions, CPU usage). We need get second-level data
because we want to make real-time monitoring. And we
also need to get the data with low overhead. Hence we pro-
pose a log-based method for monitoring (We will discuss it
later in section 5.2.). In some cases, the overhead of the log
parser/analyzer is small enough to be deployed directly on
the validating peer.
• Synchronize Peer is the peer which is participating in
keeping the blockchain. It is similar to the non-validating
peer (we have talked about it in section 3.2). In some special
cases, we cannot collect all the data we want in the logs
from the validating peer. For example, in the client called
GETH (a Golang implement of Ethereum), we cannot get the
timestamp when the transaction is confirmed in the block
from the logs. Thus we need to get this information from an
RPC query request (e.g., web3.eth.gettransaction(hash)). But
we do not want this request to make extra overhead with the

Figure 6: RPC Method and Log-based Method

blockchain (Test it later in section 6.1). Hence we need a peer
from which we can get the information without affecting on
the blockchain.
• Data collector/calculator collects the data from each log
analyzer and checkout the synchronize peer in a period of
time. Then it calculates every performance metrics. The de-
veloper can store the data in the memory or write it into the
database. In some situation, storing the data in the memory
is enough and more lightweight. To output the result of the
calculation, we design some RESTful interfaces. The REST-
ful interfaces also satisfy the asynchronous requests, which
make it easier to display the performance in the front-end
visualization.
• Web Frontier is the visualization that displays the data of
performance from the metric calculator. Users can monitor
the blockchain easily through the visualization. Furthermore,
the managers or developers can use it to do some optimiza-
tion or anomaly detection.

5.2 Log-based Method: Source Data Acquisition
In this subsection we detail the log parser/analyzer and the method
of source data acquisition. Figure 6 shows the processes of RPC
method and log-based method.

RPC method is a way that users interact directly with the validat-
ing peer. Most of the research up to now use the RPC method to get
the data of the blockchain (e.g., the count of transactions). However,
this kind of data acquisition is quite inefficient, as it introduces big
overhead onto the peer itself in the situation of real-time monitor-
ing. Moreover, the consumption resource for calling the JSON-RPC
interface would be counted into the consumption of the blockchain
program itself, making the monitoring inaccurate. Moreover the
RPC method can only get a little information about the blockchain
system, which is not enough for us to measure all the metrics we
propose in section 4.

In distributed systems, developers usually use the log to trace
the data. (e.g., in Google, developers use Dapper [28] to analysis
the log and trace the data in their servers) Inspired by the this, we
collect the data of the blockchain through a log-based method.

As Figure 6 shows, we set up an analyzer for each log from each
validating peer of the blockchain system. As Figure 7 shows, we

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu

Figure 7: Detailed View of Log-based Method

parse the log and then distribute the log to different types (e.g.,
block, transaction, execution, state). There are many kinds of logs
among the different blockchain systems, but we can extract the uni-
form or similar actions. We propose a tuple of <line, timestamp,
type, action, hashOrId, info> to record every common actions
in different blockchain systems. In this way, not only can we get
more details about the process of the blockchain, but also monitor
different blockchain systems by the same metrics.

In the data processing, we can easily store the data in thememory
or database. Then we provide some customized interfaces to make
it easy for the data calculator and front-end visualization. In this
way, we can decrease the times of request. For example, in the
period of one second, if there are 100 blocks generated per second
and we want to know their timestamps, the log-based method can
transfer the data in one request but the RPC method usually needs
100 requests (e.g., web3.eth.getBlock). Moreover, we also avoid the
resource consumption of the RPC method to be counted in the
blockchain program.

In summary, compared with the RPC-method, our log-based
method has the following advantages
• Low overhead: The monitoring system has negligible perfor-
mance impact on blockchain services.
• Detailed monitoring: It allows users to know how the re-
sources are consumed in every stage and help the developers
to optimize the performance.
• Scalability: It is easy to be extended tomonitor new blockchain
systems or peers in the situations where the number of the
peers may increase or decrease.

6 EVALUATION
We implement our framework by Node.js and conduct experiments
to answer three research questions:

Question 1:How is the overhead caused by the log-basedmethod,
compared with the RPC method?

Question 2: How is the overall performance between different
blockchain systems and smart contracts?

Question 3: How is the detailed performance of the blockchain
in different situations?

Table 1: Change of Throughput with Log-based Method and
RPC Method

Requests Normal Log-based RPC
500 6.8400 6.4406(-5.83%) 6.1904(-9.49%)
1000 6.8552 6.8269(-0.41%) 5.6436(-17.67%)
2000 6.1566 6.0166(-2.27%) 5.5366(-10.07%)
3000 5.0854 5.0266(-1.15%) 3.6200(-28.81%)

In section 6.1 ,we measure the overhead of the log-based method
and RPC method to answer Q1. For Q2, we run and monitor the
most popular blockchain systems: Ethereum (v1.5.9), Parity (v1.8.9),
Fabric (v0.6), CITA (v0.13). Then we collect and classify different
kinds of smart contracts, and then deploy and invoke them on
Ethereum to measure the overall metrics of them. For Q3, we run
Ethereum in different situations tomonitor its detailed performance,
with 1,000 open-source contracts collected from the real world
public chain. All the evaluations are conducted on the peers with i7-
4790 3.60GHzCPU, 8GB RAM.Wewill upload the configuration files
and logs during the evaluation onto our website1. The experimental
results show that our framework can make detailed and real-time
performance monitoring of blockchain systems.

6.1 Overhead of the Log-based Method
In order to compare the overhead of log-based method and RPC
method, we use both of them on the same blockchain system us-
ing the GETH (Ethereum client). First, we broadcast transaction
requests in the batch of 500, 1,000, 2,000 and 3,000 to measure the
throughput without any real-time monitoring. (We calculate the
TPS after all the transactions have been confirmed.) That is the
normal throughput. Then we repeat the experiment twice, one is
monitoring the transactions with the log-based method and the
other with the RPC method. By doing so, we can see how the
throughput changes to compare the overhead. The result is shown
in Table 1, showing that the change of throughput with log-based
method is much lower than the one with RPC method. In the ex-
periment with 1,000 requests, the impact of log-based method is
95% less than the impact of RPC method. We also record the usage
of computing resources (CPU, memory, network socket and disk
read) with the 500 transaction queries per second. The overhead of
log-based method and RPC method is shown in Figure 8, we can
see that the overhead of log-based method is much lower and even
negligible.

6.2 Overall Performance
Wemonitor the most popular blockchain systems: Ethereum, Parity,
Fabric, CITA with running a DoingNothing [16] contract to see the
overall performance metrics. The result is shown in Table 2. We
can see that Farbic and CITA have larger Transactions Per Second
than others, since they are mainly designed as the permissioned
blockchain and the consensus protocol is much faster. For Ethereum
and Parity-PoW, their utilization of computing resources (Transac-
tions Per CPU, Transactions Per Memory Second is quite low since

1http://ibase.site

A Detailed and Real-time Performance Monitoring Framework for Blockchain SystemsICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 8: Overhead of Resources of Log-based Method and
RPC Method

Table 2: Overall Performance of Different Blockchain Sys-
tems

Blockchain TPS TPC TPMS TPDIO TPND
Ethereum 5.55578 0.00195 0.01060 0.26573 0.22206
Parity-PoW 3.95500 0.00140 0.06814 0.00264 0.07167
Fabric 600.611 2.65340 4.28265 0.13816 0.10122
CITA 256.636 1.33393 0.43244 0.59888 0.16208

the PoW consensus protocol make them use lots of computing re-
sources on the hash computing. The Transactions Per Network Data
of CITA and Fabric is lower than Ethereum because the network
consumption of PBFT [9] and microservice architecture of CITA
might be high.

For different smart contracts, we first collect and classify them,
and then deploy and invoke them on Ethereum to measure the
overall metrics of them. The result is shown in Table 3. We can
see that the contracts which are mainly used to store the arrays
have the fast throughput but the lower TPDIO, which is caused
by the world state read and written frequently into the disk. The
contracts withmany loop operations have the lowest TPC and TPMS,
resulted from the great consumption of computing resources by the
loop operations. Further more the contracts with many account-
related operations (Acc10000 and Acc50000) also consume lots of
computing resources since the operations to the accounts will cause
the hash computing of the world state. We will not describe the
ARD here because it will be more meaningful to test it in the WAN
rather than the LAN.

In this experiment, we observe that the blockchain with PoW
consensus protocol shows lower overall performance than others.
Thus we suggest the users to avoid using PoW blockchain systems
in the high frequency trading scene.

Table 3: Overall Performance of Different Smart Contracts
on Ethereum

Contract TPS TPC TPMS TPDIO TPND
Store 7.93134 0.00347 0.01849 0.02569 0.40015
Loop 2.40587 0.00276 0.00629 0.04130 0.19420
Acc10000 2.82720 0.00107 0.00735 0.04195 0.14316
Acc50000 0.56219 0.00023 0.00197 0.00852 0.04876

Table 4: Detailed Performance of Ethereum

Peers PDR RRRmax TPRmax CET SUT CCT
(peers) (peers/s) (resps/s) (txs/s) (s/tx) (s/tx) (s/tx)
Pub-1 0.06058 60.606 - 0.0002 0.0001 -
Pri-1 - 81.677 - 0.0006 0.0003 9.55
Pri-2 333.30 73.313 72.0 0.0009 0.0007 5.13
Pri-4 333.33 86.910 90.0 0.0011 0.0007 3.49

6.3 Detailed Performance
Tomeasure the detail metrics of Ethereum, we run GETH (Ethereum
client) in different environments with different number of peers to
monitor its detailed performance using 1,000 open-source contracts
collected from the real world public chain. The result is shown in
Table 4. In this experiment, we first set up one peer in the pub-
lic network, which is synchronized with the public blockchain
of Ethereum to monitor its performance. Then, we run a private
blockchain of Ethereum in the LAN environment with different
number of peers. As shown in Table 4, the peer of the public chain
shows much lower Peer Discovery Rate than the peers in private
chain, because the peers of private chain are known by each other in
the beginning and the network environment is faster in LAN than
Internet. We deploy the same 1,000 smart contracts in the private
blockchain, and observe that the Contract Execution Time and State
Updating Time are nearly unchanged. But the Consensus-Cost Time
is lower in the system of more peers because the hash computing
at the same difficulty is shared by all the peers to make it faster.

In this experiment, we use our framework to find out the bottle-
necks of Ethereum by monitoring the detailed performance. Since
peer discovery, transactions propagating and consensus-cost mainly
restrict the performance of Ethereum, developers might optimize
the network module and consensus module to improve the perfor-
mance of Ethereum.

For more information, please visit http://ibase.site to get all the
configuration and results.

7 CONCLUSION AND FUTUREWORK
This paper proposes overall and detailed performance metrics for
different blockchain systems. We also propose a scalable framework
for detailed and real-time monitoring of blockchain systems, which
hasmuch lower overhead andmore details about the blockchain sys-
tems compared with previous approaches. We collect and classify
1,000 open-source smart contracts to conduct comprehensive per-
formance monitoring and evaluation of 4 well-known blockchain

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu

systems. The experimental result shows the feasibility of our pro-
posed framework. Moreover, we come out with some suggestions
for the further blockchain development.

We will upload our implement and logs during the evaluation on
http://ibase.site. In the future, our work can be extended in different
aspects: (1)Monitoring more blockchain systems: Blockchain
is very popular nowadays. More and more different blockchain sys-
tems are springing up. There are some new kinds of "blockchain"
systems such as IOTA, Corda, which do not have the structure of
blockchain but also enable peers to make consensus. And there are
many other actions (e.g., permission checking) that could be mon-
itored. (2)Tracing of blockchain systems: We used log-based
method as a way for performance monitoring. It can also be applied
in the tracing of blockchain systems. By this way, developers can
make it easier for users to trace the transaction and know the whole
process of the transaction. (3)Anomaly detection: The log-based
method provides lots of structured data. Researchers and develop-
ers can easily use the data to detect anomalies (e.g., early warning
when a blockchain system is being partitioned).

ACKNOWLEDGMENTS
The work described in this paper was supported by the National
Key Research and Development Program (2016YFB1000101), the
National Natural Science Foundation of China (61672545, 61722214,
61472338), the Program for Guangdong Introducing Innovative and
Enterpreneurial Teams (2016ZT06D211), and the Pearl River S&T
Nova Program of Guangzhou (201710010046). Zibin Zheng and
Xiangping Chen are the corresponding authors.

REFERENCES
[1] 2017. Go Ethereum. https://github.com/ethereum/go-ethereum/.
[2] 2017. Parity documentation. https://paritytech.github.io/wiki.
[3] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener, Patrick Reynolds, and

Athicha Muthitacharoen. 2003. Performance debugging for distributed systems
of black boxes. ACM SIGOPS Operating Systems Review 37, 5 (2003), 74–89.

[4] E Androulaki, C Cachin, K Christidis, C Murthy, B Nguyen, and M Vukolić. 2016.
Hyperledger fabric proposals: Next consensus architecture proposal. (2016).

[5] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A
Maltz, and Ming Zhang. 2007. Towards highly reliable enterprise network ser-
vices via inference of multi-level dependencies. In ACM SIGCOMM Computer
Communication Review, Vol. 37. ACM, 13–24.

[6] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, A Rastogi, T Sibut-Pinote, N Swamy,
and S Zanella-Beguelin. 2016. Formal verification of smart contracts. In Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security-PLAS. 91–96.

[7] Vitalik Buterin et al. 2013. Ethereum white paper. (2013).
[8] Christian Cachin. 2016. Architecture of the Hyperledger blockchain fabric. In

Workshop on Distributed Cryptocurrencies and Consensus Ledgers.
[9] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In

OSDI, Vol. 99. 173–186.
[10] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized

smart contracts devour your money. In International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 442–446.

[11] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zhihao Li, Xiapu Luo, Man Ho Au,
and Xiaosong Zhang. 2017. An Adaptive Gas Cost Mechanism for Ethereum to
Defend Against Under-Priced DoS Attacks. In Proceedings of Information Security
Practice and Experience - 13th International Conference, ISPEC 2017, Melbourne,

VIC, Australia, December 13-15, 2017.
[12] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou.

2018. Detecting Ponzi Schemes on Ethereum: Towards Healthier Blockchain
Technology. In Proceedings of the 27th International Conference on World Wide
Web (Accepted), WWW. ACM.

[13] Konstantinos Christidis and Michael Devetsikiotis. 2016. Blockchains and smart
contracts for the internet of things. IEEE Access 4 (2016), 2292–2303.

[14] Patrick Dai, Neil Mahi, Jordan Earls, and Alex Norta. 2017. Smart-Contract
Value-Transfer Protocols on a Distributed Mobile Application Platform. (2017).

[15] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the
bitcoin network. In International Conference on Peer-to-Peer Computing (P2P).
IEEE, 1–10.

[16] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data.
ACM, 1085–1100.

[17] Ye Guo and Chen Liang. 2016. Blockchain application and outlook in the banking
industry. Financial Innovation 2, 1 (2016), 24.

[18] Florian Idelberger, Guido Governatori, Régis Riveret, and Giovanni Sartor. 2016.
Evaluation of logic-based smart contracts for blockchain systems. In International
Symposium on Rules and Rule Markup Languages for the Semantic Web. Springer,
167–183.

[19] Harry Kalodner, Steven Goldfeder, Alishah Chator, Malte Möser, and Arvind
Narayanan. 2017. BlockSci: Design and applications of a blockchain analysis
platform. arXiv preprint arXiv:1709.02489 (2017).

[20] Henry M Kim and Marek Laskowski. 2016. Towards an ontology-driven
blockchain design for supply chain provenance. (2016).

[21] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. 2017. A Survey
on the security of blockchain systems. Future Generation Computer Systems
(2017).

[22] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 254–269.

[23] Bill Marino and Ari Juels. 2016. Setting standards for altering and undoing smart
contracts. In International Symposium on Rules and Rule Markup Languages for
the Semantic Web. Springer, 151–166.

[24] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. 2017. A Smart Contract
for Boardroom Voting with Maximum Voter Privacy. IACR Cryptology ePrint
Archive (2017), 110.

[25] Mahesh Murthy. 2017. Life Cycle of an Ethereum Transaction.
https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-
e5c66bae0f6e.

[26] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[27] Patrick Reynolds, Janet L Wiener, Jeffrey C Mogul, Marcos K Aguilera, and Amin

Vahdat. 2006. WAP5: black-box performance debugging for wide-area systems.
In Proceedings of the 15th international conference on World Wide Web. ACM,
347–356.

[28] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure. Technical Report. Technical
report, Google, Inc.

[29] Melanie Swan. 2015. Blockchain thinking: The brain as a dac (decentralized
autonomous organization). In Texas Bitcoin Conference. 27–29.

[30] Nick Szabo. 1997. The idea of smart contracts. Nick Szabo’s Papers and Concise
Tutorials (1997).

[31] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication. In International Workshop on Open Problems in Network Security.
Springer, 112–125.

[32] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz,
An Binh Tran, and Paul Rimba. 2017. On availability for blockchain-based sys-
tems. In Proceedings of the 36th International Symposium on Reliable Distributed
Systems (SRDS). IEEE.

[33] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014).

[34] Jan Xie. 2017. CITA Technical Whitepaper. https://github.com/cryptape/cita.
[35] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, and Huaimin Wang. 2016. Blockchain

challenges and opportunities: A survey. International Journal of Web and Grid
Services, accepted (2016).

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 BASIC CONCEPTS
	3.1 Blockchain
	3.2 Smart Contract
	3.3 Common Blockchain Systems

	4 PERFORMANCE METRICS
	4.1 Gas: an Unsuitable Metric
	4.2 Overall Performance Metrics of Blockchain
	4.3 Detailed Performance Metrics of Blockchain

	5 FRAMEWORK OF PERFORMANCE MONITORING
	5.1 Overview
	5.2 Log-based Method: Source Data Acquisition

	6 EVALUATION
	6.1 Overhead of the Log-based Method
	6.2 Overall Performance
	6.3 Detailed Performance

	7 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

